Skip to main content
Log in

Liquid chromatography coupled with tandem mass spectrometry to characterise trace levels of cyanobacteria and dinoflagellate toxins in suspended solids and sediments

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microcystins, anatoxins and okadaic acid are toxins produced by freshwater cyanobacteria and marine dinoflagellates. These toxins have been the responsible for the illness and death of biota and humans. To determine their presence in water during blooms, sensitive analytical methods are needed. In this study, we have developed a new liquid chromatography tandem mass spectrometry (LC-MS/MS) method for fast multiresidue determination of five toxins in suspended material and sediment samples. For each target compound, two selected reaction monitoring (SRM) transitions were optimised. Chromatographic conditions were optimised considering that the compounds analysed had different chemical structure and chromatographic behaviour. Using a Luna C18 column and specific SRM transitions, five phytotoxins were resolved. Method detection limits (MDL) for anatoxin-a, microcystins RR, LR and YR and okadaic acid were 7.1, 3.3, 81.7, 102.8 and 28.8 ng g−1 dry weight in sediment, respectively. The developed analytical method was successfully applied to analyse the presence of toxins in suspended solids and sediment from Ebro River (NE Spain) and Ebro delta-associated lagoons. Anatoxin-a was detected downstream of the Riba-Roja reservoir with levels ranging from 20 to 1120 ng g−1 dry weight of suspended solids. Okadaic acid was only detected in three samples collected in the Alfacs Bay (Ebro delta, Spain) affected by Dinophysis blooms in 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chapela MJ, Reboreda A, Vieites JM, Cabado AG (2008) Lipophilic toxins analyzed by liquid chromatography-mass spectrometry and comparison with mouse bioassay in fresh, frozen, and processed molluscs. J Agric Food Chem 56(19):8979–8986

    Article  CAS  Google Scholar 

  2. Ibelings BW, Havens KE (2008) Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Adv Exp Med Biol 619:675–732

    Article  CAS  Google Scholar 

  3. US EPA (2012) Estimation Programmes Interface Suite™ for Microsoft Windows, v4.11. US Environmental Protection Agency, Washington, DC, USA

  4. Cong L, Huang B, Chen Q, Lu B, Zhang J, Ren Y (2006) Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry. Anal Chim Acta 569(1–2):157–168

    Article  CAS  Google Scholar 

  5. Dörr FA, Rodríguez V, Molica R, Henriksen P, Krock B, Pinto E (2010) Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55(1):92–99

    Article  Google Scholar 

  6. Gugger M, Lenoir S, Berger C, Ledreux A, Druart JC, Humbert JF, Guette C, Bernard C (2005) First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45(7):919–928

    Article  CAS  Google Scholar 

  7. Zhang M, Tang F, Chen F, Xu J, Zhang L (2012) Simultaneous determination of nine microcystins in surface water by solid phase extraction and ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry. Chin J Chromatogr (Se Pu) 30(1):51–55

    Article  Google Scholar 

  8. Aboal M, Puig MÁ (2005) Intracellular and dissolved microcystin in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 45(4):509–518

    Article  CAS  Google Scholar 

  9. Schmidtkunz C, Bernd Stich H, Welsch T (2009) Improving the selectivity and confidence in the HPLC analysis of microcystins in lake sediments. J Liq Chromatogr Relat Technol 32(6):801–821

    Article  CAS  Google Scholar 

  10. Petrovic M, Ginebreda A, Acuña V, Batalla RJ, Elosegi A, Guasch H, de Alda ML, Marcé R, Muñoz I, Navarro-Ortega A, Navarro E, Vericat D, Sabater S, Barceló D (2011) Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. TrAC Trends Anal Chem 30(8):1269–1278

    Article  CAS  Google Scholar 

  11. Herry-Allani SE, Bouaïcha N (2013) Cyanobacterial blooms in dams: environmental factors, toxins, public health, and remedial measures. Dams: Structure, Performance and Safety Management. Nova Science Publisher, Hauppauge, NY, USA, pp 221–264

  12. Ikeda T, Yoshitani J, Terakawa A (2005) Flood management under climatic variability and its future perspective in Japan. Water Sci Technol 51:133–140

  13. Kleinen T, Petschel-Held G (2007) Integrated assessment of changes in flooding probabilities due to climate change. Clim Chang 81(3–4):283–312

    Article  Google Scholar 

  14. Tsuji K, Masui H, Uemura H, Mori Y, Harada K-i (2001) Analysis of microcystins in sediments using MMPB method. Toxicon 39(5):687–692

    Article  CAS  Google Scholar 

  15. Benijts T, Dams R, Lambert W, De Leenheer A (2004) Countering matrix effects in environmental liquid chromatography–electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J Chromatogr A 1029(1):153–159

    Article  CAS  Google Scholar 

  16. Bosch C, Olivares A, Faria M, Navas JM, del Olmo I, Grimalt JO, Piña B, Barata C (2009) Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry. Aquat Toxicol 94(1):16–27

    Article  CAS  Google Scholar 

  17. Barata C, Damasio J, López MA, Kuster M, De Alda ML, Barceló D, Riva MC, Raldúa D (2007) Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ Toxicol Chem 26(2):370–379

    Article  CAS  Google Scholar 

  18. Way C (2012) Standard methods for the examination of water and wastewater. Water Environment Federation, Secaucus, NJ, USA

  19. Barco M, Lawton LA, Rivera J, Caixach J (2005) Optimization of intracellular microcystin extraction for their subsequent analysis by high-performance liquid chromatography. J Chromatogr A 1074(1–2):23–30

    Article  CAS  Google Scholar 

  20. Sanchez JA, Otero P, Alfonso A, Ramos V, Vasconcelos V, Aráoz R, Molgó J, Vieytes MR, Botana LM (2014) Detection of anatoxin-a and three analogs in Anabaena spp. cultures: new fluorescence polarization assay and toxin profile by LC-MS/MS. Toxins 6(2):402–415. doi:10.3390/toxins6020402

    Article  Google Scholar 

  21. Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley VR, Carmichael WW, Evans WR (1992) Identification of 12 hepatotoxins from a homer lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: nine new microcystins. J Org Chem 57(3):866–872

    Article  CAS  Google Scholar 

  22. Kaloudis T, Zervou SK, Tsimeli K, Triantis TM, Fotiou T, Hiskia A (2013) Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. J Hazard Mater 263:105–115. doi:10.1016/j.jhazmat.2013.07.036

    Article  CAS  Google Scholar 

  23. Xu W, Chen Q, Zhang T, Cai Z, Jia X, Xie Q, Ren Y (2008) Development and application of ultra performance liquid chromatography–electrospray ionization tandem triple quadrupole mass spectrometry for determination of seven microcystins in water samples. Anal Chim Acta 626(1):28–36. doi:10.1016/j.aca.2008.07.040

    Article  CAS  Google Scholar 

  24. Shen Q, Gong L, Baibado JT, Dong W, Wang Y, Dai Z, Cheung H-Y (2013) Graphene based pipette tip solid phase extraction of marine toxins in shellfish muscle followed by UPLC–MS/MS analysis. Talanta 116:770–775. doi:10.1016/j.talanta.2013.07.042

    Article  CAS  Google Scholar 

  25. Ferranti P, Fabbrocino S, Nasi A, Caira S, Bruno M, Serpe L, Gallo P (2009) Liquid chromatography coupled to quadruple time-of-flight tandem mass spectrometry for microcystin analysis in freshwaters: method performances and characterisation of a novel variant of microcystin-RR. Rapid Commun Mass Spectrom 23(9):1328–1336

    Article  CAS  Google Scholar 

  26. Li W, Duan J, Niu C, Qiang N, Mulcahy D (2011) Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement. J Chromatogr Sci 49(9):665–670

    Article  CAS  Google Scholar 

  27. Shan Y, Shi X, Dou A, Zou C, He H, Yang Q, Zhao S, Lu X, Xu G (2011) A fully automated system with on-line micro solid-phase extraction combined with capillary liquid chromatography-tandem mass spectrometry for high throughput analysis of microcystins and nodularin-R in tap water and lake water. J Chromatogr A 1218(13):1743–1748

    Article  CAS  Google Scholar 

  28. Wang J, Pang X, Ge F, Ma Z (2007) An ultra-performance liquid chromatography-tandem mass spectrometry method for determination of microcystins occurrence in surface water in Zhejiang Province, China. Toxicon 49(8):1120–1128

    Article  CAS  Google Scholar 

  29. Zhang L, Ping X, Yang Z (2004) Determination of microcystin-LR in surface water using high-performance liquid chromatography/tandem electrospray ionization mass detector. Talanta 62(1):193–200

    CAS  Google Scholar 

  30. Al-Sammak MA, Hoagland KD, Cassada D, Snow DD (2014) Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6(2):488–508

    Article  CAS  Google Scholar 

  31. Chen J, Yan T, Xu J, He S, Zhao P, Yan X (2012) Simultaneous determination of toxins in algae and water samples by high-performance liquid chromatography with triple quadrupole mass spectrometry. J Sep Sci 35(9):1094–1101

    Article  CAS  Google Scholar 

  32. Yen HK, Lin TF, Liao PC (2011) Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry. Toxicon 58(2):209–218

    Article  CAS  Google Scholar 

  33. Karlsson KM, Spoof LEM, Meriluoto JAO (2005) Quantitative LC-ESI-MS analyses of microcystins and nodularin-R in animal tissue -Matrix effects and method validation. Environ Toxicol 20(3):381–389

    Article  CAS  Google Scholar 

  34. Chen W, Song L, Peng L, Wan N, Zhang X, Gan N (2008) Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions. Water Res 42(3):763–773

    Article  CAS  Google Scholar 

  35. Klitzke S, Beusch C, Fastner J (2011) Sorption of the cyanobacterial toxins cylindrospermopsin and anatoxin-a to sediments. Water Res 45(3):1338–1346

    Article  CAS  Google Scholar 

  36. Rapala J, Lahti K, Sivonen K, Niemela SI (1994) Biodegradability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Lett Appl Microbiol 19(6):423–428

    Article  CAS  Google Scholar 

  37. Song H, Reichwaldt ES, Ghadouani A (2014) Contribution of sediments in the removal of microcystin-LR from water. Toxicon 83:84–90

    Article  CAS  Google Scholar 

  38. Santos MCR, Muelle H, Pacheco DMD (2012) Cyanobacteria and microcystins in Lake Furnas (S. Miguel island-Azores). Limnetica 31(1):107–118

    Google Scholar 

  39. Rovira A, Ibàñez C (2007) Sediment management options for the lower Ebro River and its Delta. J Soils Sediments 7(5):285–295

    Article  CAS  Google Scholar 

  40. de Hoyos C, Negro AI, Aldasoro JJ (2004) Cyanobacteria distribution and abundance in the Spanish water reservoirs during thermal stratification. Limnetica 23(1–2):119–132

    Google Scholar 

  41. Quesada A, Sanchis D, Carrasco D (2004) Cyanobacteria in Spanish reservoirs. How frequently are they toxic? Limnetica 23(1–2):109–118

    Google Scholar 

  42. Li D, Kong F, Yu Y, Yang Z, Shi X (2011) The community structure and abundance of microcystin-producing cyanobacteria in surface sediment of Lake Taihu in winter. Shengtai Xuebao Acta Ecol Sin 31(21):6551–6560

    CAS  Google Scholar 

  43. Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of Photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Physiol 103(3):971–977

    Article  CAS  Google Scholar 

  44. Savichtcheva O, Debroas D, Kurmayer R, Villar C, Jenny JP, Arnaud F, Perga ME, Domaizon I (2011) Quantitative PCR enumeration of total/toxic Planktothrix rubescens and total cyanobacteria in preserved DNA isolated from lake sediments. Appl Environ Microbiol 77(24):8744–8753

    Article  CAS  Google Scholar 

  45. Toporowska M, Pawlik-Skowrońska B, Kalinowska R (2014) Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus spp. (Diptera: Chironomidae). Eur J Entomol 111(1):83–90

    Article  CAS  Google Scholar 

  46. Chen X, Xiang H, Hu Y, Zhang Y, Ouyang L, Gao M (2013) Fates of Microcystis aeruginosa cells and associated microcystins in sediment and the effect of coagulation process on them. Toxins 6(1):152–167

    Article  Google Scholar 

  47. Kaminski A, Bober B, Lechowski Z, Bialczyk J (2013) Determination of anatoxin-a stability under certain abiotic factors. Harmful Algae 28:83–87

    Article  CAS  Google Scholar 

  48. Garcés E, Delgado M, Camp J (1997) Phased cell division in a natural population of Dinophysis sacculus and the in situ measurement of potential growth rate. J Plankton Res 19(12):2067–2077

    Article  Google Scholar 

  49. Garcés E, Delgado M, Masó M, Camp J (1999) In situ growth rate and distribution of the ichthyotoxic dinoflagellate Gyrodinium corsicum Paulmier in an estuarine embayment (Alfacs Bay, NW Mediterranean Sea). J Plankton Res 21(10):1977–1991

    Article  Google Scholar 

  50. Garibo D, Campbell K, Casanova A, De La Iglesia P, Fernández-Tejedor M, Diogène J, Elliott CT, Campàs M (2014) SPR immunosensor for the detection of okadaic acid in mussels using magnetic particles as antibody carriers. Sensors Actuators B Chem 190:822–828

    Article  CAS  Google Scholar 

  51. Loureiro S, Garcés E, Fernández-Tejedor M, Vaqué D, Camp J (2009) Pseudo-nitzschia spp. (Bacillariophyceae) and dissolved organic matter (DOM) dynamics in the Ebro Delta (Alfacs Bay, NW Mediterranean Sea). Estuar Coast Shelf Sci 83(4):539–549

    Article  CAS  Google Scholar 

  52. Quijano-Scheggia S, Garcés E, Flo E, Fernandez-Tejedor M, Diogène J, Camp J (2008) Bloom dynamics of the genus Pseudo-nitzschia (Bacillariophyceae) in two coastal bays (NW Mediterranean Sea). Sci Mar 72(3):577–590

    Article  Google Scholar 

  53. Gómez-Gutiérrez A, Tolosa I, Jover E, Bayona JM, Albaigés J (2011) Origin and vertical dynamics of particulate organic matter in a salt-wedge estuary, the Ebro Delta, inferred from lipid molecular markers and compound-specific isotope carbon analysis. Mar Chem 126(1–4):269–280

    Article  Google Scholar 

  54. Ibánez C, Prat N (2003) The environmental impact of the Spanish National Hydrological Plan on the lower Ebro River and Delta. Int J Water Resour Dev 19(3):485–500

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish MICINN grant and FEDER funds (CTM2011-30471-C02-01). Claudia Rivetti was supported by a fellowship from the MICINN (FPI BES-2012-053631). We thank Jorge Diogène, head of the Marine Monitoring Subprogram of IRTA, Sant Carles de la Ràpita, 43540, Spain for kindly supplying the Dinophysis bloom samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Barata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivetti, C., Gómez-Canela, C., Lacorte, S. et al. Liquid chromatography coupled with tandem mass spectrometry to characterise trace levels of cyanobacteria and dinoflagellate toxins in suspended solids and sediments. Anal Bioanal Chem 407, 1451–1462 (2015). https://doi.org/10.1007/s00216-014-8308-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8308-4

Keywords

Navigation