Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis

Abstract

The comprehensive approach for the lipidomic characterization of human breast cancer and surrounding normal tissues is based on hydrophilic interaction liquid chromatography (HILIC)–electrospray ionization mass spectrometry (ESI-MS) quantitation of polar lipid classes of total lipid extracts followed by multivariate data analysis using unsupervised principal component analysis (PCA) and supervised orthogonal partial least square (OPLS). This analytical methodology is applied for the detailed lipidomic characterization of ten patients with the goal to find the statistically relevant differences between tumor and normal tissues. This strategy is selected for better visualization of differences, because the breast cancer tissue is compared with the surrounding healthy tissue of the same patient, therefore changes in the lipidome are caused predominantly by the tumor growth. A large increase of total concentrations for several lipid classes is observed, including phosphatidylinositols, phosphatidylethanolamines, phosphatidylcholines, and lysophosphatidylcholines. Concentrations of individual lipid species inside the abovementioned classes are also changed, and in some cases, these differences are statistically significant. PCA and OPLS analyses enable a clear differentiation of tumor and normal tissues based on changes of their lipidome. A notable decrease of relative abundances of ether and vinylether (plasmalogen) lipid species is detected for phosphatidylethanolamines, but no difference is apparent for phosphatidylcholines.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Pelengaris S, Khan M (2013) Wiley: Oxford

  2. 2.

    Rosen L, Rosen G (2013) http://cancer.org/: Atlanta

  3. 3.

    Thomson CA, Thompson PA (2009) Future Oncol 5:1257–1269

    Article  Google Scholar 

  4. 4.

    Azordegan N, Fraser V, Le K, Hillyer LM, Ma DWL, Fischer G, Moghadasian MH (2013) Mol Cell Biochem 374:223–232

    CAS  Article  Google Scholar 

  5. 5.

    Pender-Cudlip MC, Krag KJ, Martini D, Yu J, Guidi A, Skinner SS, Zhang Y, Qu XY, He CW, Xu Y, Qian SY, Kang JX (2013) Cancer Sci 104:760–764

    CAS  Article  Google Scholar 

  6. 6.

    Lv WW, Yang TS (2012) Clin Biochem 45:127–133

    CAS  Article  Google Scholar 

  7. 7.

    Shannon J, King IB, Moshofsky R, Lampe JW, Gao DL, Ray RM, Thomas DB (2007) Am J Clin Nutr 85:1090–1097

    CAS  Google Scholar 

  8. 8.

    Kang JX, Liu A (2013) Cancer Met Rev 32:201–210

    CAS  Article  Google Scholar 

  9. 9.

    Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A, Berra B, Rizzo AM (2011) Lipids Health Dis. 10

  10. 10.

    Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A (2009) Eur J Cancer 45:2077–2086

    CAS  Article  Google Scholar 

  11. 11.

    Doria ML, Cotrim CZ, Simoes C, Macedo B, Domingues P, Domingues MR, Helguero LA (2013) J Cell Physiol 228:457–468

    CAS  Article  Google Scholar 

  12. 12.

    Doria ML, Cotrim Z, Macedo B, Simoes C, Domingues P, Helguero L, Domingues MR (2012) Breast Cancer Res Tr 133:635–648

    CAS  Article  Google Scholar 

  13. 13.

    Hua X, Zhou ZX, Yuan L, Liu SQ (2013) Anal Chim Acta 788:135–140

    CAS  Article  Google Scholar 

  14. 14.

    Chughtai K, Jiang L, Greenwood TR, Glunde K, Heeren RMA (2013) J Lipid Res 54:333–344

    CAS  Article  Google Scholar 

  15. 15.

    Hilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, Berg E, Nygren H, Sysi-Aho M, Griffin JL, Fiehn O, Loibl S, Richter-Ehrenstein C, Radke C, Hyotylainen T, Kallioniemi O, Iljin K, Oresic M (2011) Cancer Res 71:3236–3245

    CAS  Article  Google Scholar 

  16. 16.

    Smith RE, Lespi P, Di Luca M, Bustos C, Marra FA, de Alaniz MJT, Marra CA (2008) Lipids 43:79–89

    CAS  Article  Google Scholar 

  17. 17.

    Hammad LA, Wu GX, Saleh MM, Klouckova I, Dobrolecki LE, Hickey RJ, Schnaper L, Novotny MV, Mechref Y (2009) Rapid Commun Mass Spectrom 23:863–876

    CAS  Article  Google Scholar 

  18. 18.

    Kim H, Min HK, Kong G, Moon MH (2009) Anal Bioanal Chem 393:1649–1656

    CAS  Article  Google Scholar 

  19. 19.

    Holčapek M, Jirásko R, Lísa MJ (2012) Chromatogr A 1259:3–15

    Article  Google Scholar 

  20. 20.

    Han XL, Yang K, Gross RW (2012) Mass Spectrom Rev 31:134–178

    CAS  Article  Google Scholar 

  21. 21.

    Yang K, Han X (2011) Metabolites 1:21–40

    CAS  Article  Google Scholar 

  22. 22.

    Begley JKP, Redpath TW, Bolan PJ, Gilbert FJ (2012) Breast Cancer Res. 14

  23. 23.

    Glunde K, Jie C, Bhujwalla ZM (2004) Cancer Res 64:4270–4276

    CAS  Article  Google Scholar 

  24. 24.

    Klomp DWJ, van de Bank BL, Raaijmakers A, Korteweg MA, Possanzini C, Boer VO, de Berg C, van de Bosch M, Luijten PR (2011) NMR Biomed 24:1337–1342

    Article  Google Scholar 

  25. 25.

    Merchant TE, Meneses P, Gierke LW, Denotter W, Glonek T (1991) Br J Cancer 63:693–698

    CAS  Article  Google Scholar 

  26. 26.

    Kirwan GM, Johansson E, Kleemann R, Verheij ER, Wheelock AM, Goto S, Trygg J, Wheelock CE (2012) Anal Chem 84:7064–7071

    CAS  Article  Google Scholar 

  27. 27.

    Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C (2013) Multi- and megavariate data analysis. Basic principles and applications. Third revised edition. MKS Umetrics AB, Malmö

    Google Scholar 

  28. 28.

    Wold S, Sjostrom M, Eriksson L (2001) Chemom Intell Lab Syst 58:109–130

    CAS  Article  Google Scholar 

  29. 29.

    Trygg J, Wold S (2002) J Chemom 16:119–128

    CAS  Article  Google Scholar 

  30. 30.

    Trygg J (2002) J Chemom 16:283–293

    CAS  Article  Google Scholar 

  31. 31.

    Folch J, Lees M, Stanley GHS (1957) Biol Chem 226:497–509

    CAS  Google Scholar 

  32. 32.

    Lísa M, Cífková E, Holčapek MJ (2011) Chromatogr A 1218:5146–5156

    Article  Google Scholar 

  33. 33.

    Cífková E, Holčapek M, Lísa M, Ovčačíková M, Lyčka A, Lynen F, Sandra P (2012) Anal Chem 84:10064–10070

    Article  Google Scholar 

  34. 34.

    Cífková E, Holčapek M, Lísa M (2013) Lipids 48:915–928

    Article  Google Scholar 

  35. 35.

    Holm S (1979) Scand J Stat 6:65–70

    Google Scholar 

  36. 36.

    Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO (2013) Lipid Res 54:1523–1530

    CAS  Article  Google Scholar 

  37. 37.

    Nagan N, Zoeller RA (2001) Prog Lipid Res 40:199

    CAS  Article  Google Scholar 

  38. 38.

    Braverman NE, Moser AB (2012) Biochim Biophys Acta-Mol Basis Dis 1822:1442–1452

    CAS  Article  Google Scholar 

  39. 39.

    Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniels VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV (2010) Cancer Res 70:8117–8126

    CAS  Article  Google Scholar 

  40. 40.

    Santos CR, Schulze A (2012) Febs J 279:2610–2623

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by ERC CZ project No. LL1302 sponsored by the Ministry of Education, Youth and Sports of the Czech Republic. E.C. acknowledges the support of the grant project no. CZ.1.07/2.3.00/30.0021 sponsored by the Ministry of Education, Youth and Sports of the Czech Republic. The help of Blanka Červená and Vitaliy Chagovets (University of Pardubice) in the extraction and data analysis and Martin Hill (Institute of Endocrinology) in the statistical evaluation is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michal Holčapek.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.02 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cífková, E., Holčapek, M., Lísa, M. et al. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal Bioanal Chem 407, 991–1002 (2015). https://doi.org/10.1007/s00216-014-8272-z

Download citation

Keywords

  • Breast cancer
  • Lipid biomarkers
  • HILIC-HPLC/ESI-MS
  • Quantitation
  • Statistical analysis