Analytical and Bioanalytical Chemistry

, Volume 407, Issue 11, pp 2985–2996 | Cite as

A mussel (Mytilus edulis) tissue certified reference material for the marine biotoxins azaspiracids

  • Pearse McCarronEmail author
  • Sabrina D. Giddings
  • Kelley L. Reeves
  • Philipp Hess
  • Michael A. Quilliam
Research Paper
Part of the following topical collections:
  1. Reference Materials for Chemical Analysis


Azaspiracids (AZAs) are lipophilic biotoxins produced by marine algae that can contaminate shellfish and cause human illness. The European Union (EU) regulates the level of AZAs in shellfish destined for the commercial market, with liquid chromatography-mass spectrometry (LC-MS) being used as the official reference method for regulatory analysis. Certified reference materials (CRMs) are essential tools for the development, validation, and quality control of LC-MS methods. This paper describes the work that went into the planning, preparation, characterization, and certification of CRM-AZA-Mus, a tissue matrix CRM, which was prepared as a wet homogenate from mussels (Mytilus edulis) naturally contaminated with AZAs. The homogeneity and stability of CRM-AZA-Mus were evaluated, and the CRM was found to be fit for purpose. Extraction and LC-MS/MS methods were developed to accurately certify the concentrations of AZA1 (1.16 mg/kg), AZA2 (0.27 mg/kg), and AZA3 (0.21 mg/kg) in the CRM. Quantitation methods based on standard addition and matrix-matched calibration were used to compensate for the matrix effects in LC-MS/MS. Other toxins present in this CRM at lower levels were also measured with information values reported for okadaic acid, dinophysistoxin-2, yessotoxin, and several spirolides.

Graphical Abstract

LC-MS/MS profile of CRM-AZA-Mus. 37-epi-AZAs resolved using neutral pH mobile phase.


Azaspiracids Seafood safety Matrix certified reference material Liquid chromatography-mass spectrometry Matrix effects 



The following staff members at the NRCC (1), the Canadian Institute of Fisheries and Technology (2), and Agriculture and Agrifood Canada (3) contributed to the production and certification of CRM-AZA-Mus: Dian Marciniak (1), Sheila Crain (1), Elliott Wright (1), Ruth A. Perez (1), Douglas Singer (2), Anne Timmins (2), John Thompson (2), and Bruno Laventure (3). This project was supported by the ASTOX project (ST/02/02, 2003–2006) funded through the Irish National Development Plan (NDP) and the Irish Marine Institute.

Supplementary material

216_2014_8250_MOESM1_ESM.pdf (91 kb)
ESM 1 (PDF 91 kb)


  1. 1.
    McMahon T, Silke J (1996) Winter toxicity of unknown aetiology in mussels. Harmful Algae News 14:2Google Scholar
  2. 2.
    Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120:9967–9968CrossRefGoogle Scholar
  3. 3.
    Twiner MJ, Rehmann N, Hess P, Doucette G (2008) Azaspiracid shellfish poisoning: a review on the chemistry, ecology, and toxicology with an emphasis on human health impacts. Mar Drugs 6:39–72CrossRefGoogle Scholar
  4. 4.
    Nicolaou KC, Vyskocil S, Koftis TV, Yamada YMA, Ling T, Chen DYK, Tang W, Petrovic G, Frederick MO, Li Y, Satake M (2004) Structural revision and total synthesis of azaspiracid-1, part 1: intelligence gathering and tentative proposal. Angewandte Chem Int Ed 43:4312–4318CrossRefGoogle Scholar
  5. 5.
    Brombacher S, Edmonds S, Volmer DA (2002) Studies on azaspiracid biotoxins. II. Mass spectral behavior and structural elucidation of azaspiracid analogs. Rapid Commun Mass Spectrom 16:2306–2316CrossRefGoogle Scholar
  6. 6.
    James KJ, Sierra MD, Lehane M, Magdalena AB, Furey A (2003) Detection of five new hydroxyl analogues of azaspiracids in shellfish using multiple tandem mass spectrometry. Toxicon 41:277–283CrossRefGoogle Scholar
  7. 7.
    Rehmann N, Hess P, Quilliam MA (2008) Discovery of new analogs of the marine biotoxin azaspiracid in blue mussels (Mytilus edulis) by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 22:549–558CrossRefGoogle Scholar
  8. 8.
    Ofuji K, Satake M, McMahon T, Silke J, James KJ, Naoki H, Oshima Y, Yasumoto T (1999) Two analogs of azaspiracids isolated from mussels, Mytilus edulis, involved in human intoxication in Ireland. Nat Toxins 7:99–102CrossRefGoogle Scholar
  9. 9.
    Ofuji K, Satake M, McMahon T, James KJ, Naoki H, Oshima Y, Yasumoto T (2001) Structures of azaspiracid analogs, azaspiracid-4 and azaspiracid-5, causative toxins of azaspiracid poisoning in Europe. Biosci Biotechnol Biochem 65:740–742CrossRefGoogle Scholar
  10. 10.
    Furey A, Moroney C, Magdalena AB, Saez MJF, Lehane M, James KJ (2003) Geographical, temporal, and species variation of the polyether toxins, azaspiracids, in shellfish. Environ Sci Technol 37:3078–3084CrossRefGoogle Scholar
  11. 11.
    James KJ, Furey A, Lehane M, Ramstad H, Aune T, Hovgaard P, Morris S, Higman W, Satake M, Yasumoto T (2002) First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon 40:909–915CrossRefGoogle Scholar
  12. 12.
    Magdalena A, Lehane M, Krys S, Fernandez M, Furey A, James K (2003) The first identification of azaspiracids in shellfish from France and Spain. Toxicon 42:105–108CrossRefGoogle Scholar
  13. 13.
    Torgersen T, Bremnes NB, Rundberget T, Aune T (2008) Structural confirmation and occurrence of azaspiracids in Scandinavian brown crabs (Cancer pagurus). Toxicon 51:93–101CrossRefGoogle Scholar
  14. 14.
    Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A (2006) First detection of azaspiracids in mussels in north west Africa. J Shellfish Res 25:1067–1070CrossRefGoogle Scholar
  15. 15.
    Trainer V, Moore L, Bill B, Adams N, Harrington N, Borchert J, da Silva D, Eberhart BT (2013) Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Mar Drugs 11:1815–1835CrossRefGoogle Scholar
  16. 16.
    Ueoka R, Ito A, Izumikawa M, Maeda S, Takagi M, Shin-ya K, Yoshida M, van Soest RWM, Matsunaga S (2009) Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin. Toxicon 53:680–684CrossRefGoogle Scholar
  17. 17.
    Krock B, Tillmann U, John U, Cembella A (2008) LC-MS-MS aboard ship: tandem mass spectrometry in the search for phycotoxins and novel toxigenic plankton from the North Sea. Anal Bioanal Chem 392:797–803CrossRefGoogle Scholar
  18. 18.
    Tillmann U, Elbrachter M, Krock B, John U, Cembella A (2009) Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol 44:63–79CrossRefGoogle Scholar
  19. 19.
    Salas R, Tillmann U, John U, Kilcoyne J, Burson A, Cantwell C, Hess P, Jauffrais T, Silke J (2011) The role of Azadinium spinosum (Dinophyceae) in the production of azaspiracid shellfish poisoning in mussels. Harmful Algae 10:774–783CrossRefGoogle Scholar
  20. 20.
    McCarron P, Kilcoyne J, Miles CO, Hess P (2009) Formation of azaspiracids-3, -4, -6, and -9 via decarboxylation of carboxyazaspiracid metabolites from shellfish. J Agric Food Chem 57:160–169CrossRefGoogle Scholar
  21. 21.
    Jauffrais T, Marcaillou C, Herrenknecht C, Truquet P, Sechet V, Nicolau E, Tillmann U, Hess P (2012) Azaspiracid accumulation, detoxification and biotransformation in blue mussels (Mytilus edulis) experimentally fed Azadinium spinosum. Toxicon 60:582–595CrossRefGoogle Scholar
  22. 22.
    Hess P, Nguyen L, Aasen J, Keogh M, Kilcoyne J, McCarron P, Aune T (2005) Tissue distribution, effects of cooking and parameters affecting the extraction of azaspiracids from mussels (Mytilus edulis) prior to analysis by liquid chromatography coupled to mass spectrometry. Toxicon 46:62–71CrossRefGoogle Scholar
  23. 23.
    Anonymous (2004) Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off J Eur Union L 139 of 30 April 2004Google Scholar
  24. 24.
    Anonymous (2008) Marine biotoxins in shellfish—azaspiracid group. Scientific opinion of the panel on contaminants in the food chain. Eur Food Safety Authority, vol 723Google Scholar
  25. 25.
    Hess P, Butter T, Petersen A, Silke J, McMahon T (2009) Performance of the EU-harmonised mouse bioassay for lipophilic toxins for the detection of azaspiracids in naturally contaminated mussel (Mytilus edulis) hepatopancreas tissue homogenates characterised by liquid chromatography coupled to tandem mass spectrometry. Toxicon 53:713–722CrossRefGoogle Scholar
  26. 26.
    Anonymous (2011) Commission Regulation (EU) No 15/2011 of 10 January 2011 amending Regulation (EC) No 2074/2005 as regards recognised testing methods for detecting marine biotoxins in live bivalve molluscs. Off J European Union L 006 of 11 January 2011: 3–6Google Scholar
  27. 27.
    Forsyth CJ, Xu JY, Nguyen ST, Samdal IA, Briggs LR, Rundberget T, Sandvik M, Miles CO (2006) Antibodies with broad specificity to azaspiracids by use of synthetic haptens. J Am Chem Soc 128:15114–15116CrossRefGoogle Scholar
  28. 28.
    McCarron P, Giddings SD, Miles CO, Quilliam MA (2011) Derivatization of azaspiracid biotoxins for analysis by liquid chromatography with fluorescence detection. J Chrom A 1218:8089–8096CrossRefGoogle Scholar
  29. 29.
    Perez RA, Rehmann N, Crain S, LeBlanc P, Craft C, MacKinnon S, Reeves K, Burton IW, Walter JA, Hess P, Quilliam MA, Melanson JE (2010) The preparation of certified calibration solutions for azaspiracid-1, -2, and -3, potent marine biotoxins found in shellfish. Anal Bioanal Chem 398:2243–2252CrossRefGoogle Scholar
  30. 30.
    Quilliam MA, Reeves K, MacKinnon S, Craft C, Whyte H, Walter J, Stobo L, Gallacher S (2006) Preparation of reference materials for azaspiracids. In: Proceedings of the 5th International Conference of Molluscan Shellfish Safety, 14–18 June 2004, Galway, Ireland, Molluscan Shellfish Safety. ISBN: 1 902895-33-9. pp 111–115Google Scholar
  31. 31.
    Turner AD, Lewis AM, Hatfield RG, Higman WA, Burrell S (2013) A feasibility study into the production of a freeze-dried oyster reference material for paralytic shellfish poisoning toxins. Anal Bioanal Chem 405:8621–8632CrossRefGoogle Scholar
  32. 32.
    McCarron P, Kotterman M, de Boer J, Rehmann N, Hess P (2007) Feasibility of gamma irradiation as a stabilisation technique in the preparation of tissue reference materials for a range of shellfish toxins. Anal Bioanal Chem 387:2487–2493CrossRefGoogle Scholar
  33. 33.
    Bogialli S, Dicorcia A (2007) Matrix solid-phase dispersion as a valuable tool for extracting contaminants from foodstuffs. J Biochem Biophys Methods 70:163–179CrossRefGoogle Scholar
  34. 34.
    Mountfort DO, Suzuki T, Truman P (2001) Protein phosphatase inhibition adapted for determination of total DSP in contaminated mussel. Toxicon 39:383–390CrossRefGoogle Scholar
  35. 35.
    McCarron P, Giddings SD, Quilliam MA (2011) A mussel tissue certified reference material for multiple phycotoxins. Part 2: liquid chromatography-mass spectrometry, sample extraction and quantitation procedures. Anal Bioanal Chem 400:835–846CrossRefGoogle Scholar
  36. 36.
    Hardstaff WR, Jamieson WD, Milley JE, Quilliam MA, Sim PG (1990) Reference materials for domoic acid, a marine neurotoxin. Fres J Anal Chem 338:520–525CrossRefGoogle Scholar
  37. 37.
    Hess P, McCarron P, Quilliam MA (2007) Fit-for-purpose shellfish reference materials for internal and external quality control in the analysis of phycotoxins. Anal Bioanal Chem 387:2463–2474CrossRefGoogle Scholar
  38. 38.
    McCarron P, Burrell S, Hess P (2007) Effect of addition of antibiotics and an antioxidant on the stability of tissue reference materials for domoic acid, the amnesic shellfish poison. Anal Bioanal Chem 387:2495–2502CrossRefGoogle Scholar
  39. 39.
    McCarron P, Emteborg H, Hess P (2007) Freeze-drying for the stabilisation of shellfish toxins in mussel tissue (Mytilus edulis) reference materials. Anal Bioanal Chem 387:2475–2486CrossRefGoogle Scholar
  40. 40.
    McCarron P, Emteborg H, Giddings SD, Wright E, Quilliam MA (2011) A mussel tissue certified reference material for multiple phycotoxins. Part 3: homogeneity and stability. Anal Bioanal Chem 400:847–858CrossRefGoogle Scholar
  41. 41.
    van der Veen AMH, Linsinger T, Pauwels J (2001) Uncertainty calculations in the certification of reference materials. 2. Homogeneity study. Accred Qual Assur 6:26–30CrossRefGoogle Scholar
  42. 42.
    Nzoughet K, Hamilton J, Floyd S, Douglas A, Nelson J, Devine L, Elliott C (2008) Azaspiracid: first evidence of protein binding in shellfish. Toxicon 51:1255–1263CrossRefGoogle Scholar
  43. 43.
    Alfonso C, Rehmann N, Hess P, Alfonso A, Wandscheer CB, Abuin M, Vale C, Otero P, Vieytes MR, Botana LM (2008) Evaluation of various pH and temperature conditions on the stability of azaspiracids and their importance in preparative isolation and toxicological studies. Anal Chem 80:9672–9680CrossRefGoogle Scholar
  44. 44.
    Barker S (2007) Matrix solid phase dispersion (MSPD). J Biochem Biophys Methods 70:151–162CrossRefGoogle Scholar
  45. 45.
    Kilcoyne J, Fux E (2010) Strategies for the elimination of matrix effects in the liquid chromatography tandem mass spectrometry analysis of the lipophilic toxins okadaic acid and azaspiracid-1 in molluscan shellfish. J Chrom A 1217:7123–7130CrossRefGoogle Scholar
  46. 46.
    Fux E, Rode D, Bire R, Hess P (2008) Approaches to the evaluation of matrix effects in the liquid chromatography-mass spectrometry (LC-MS) analysis of three regulated lipophilic toxin groups in mussel matrix (Mytilus edulis). Food Addit Contam 25:1024–1032CrossRefGoogle Scholar
  47. 47.
    Ito S, Tsukada K (2002) Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J Chromatogr A 943:39–46CrossRefGoogle Scholar
  48. 48.
    Gerssen A, Olst EHW, Mulder PPJ, Boer J (2010) In-house validation of a liquid chromatography tandem mass spectrometry method for the analysis of lipophilic marine toxins in shellfish using matrix-matched calibration. Anal Bioanal Chem 397:3079–3088CrossRefGoogle Scholar
  49. 49.
    Kilcoyne J, McCarron P, Twiner MJ, Nulty C, Crain S, Quilliam MA, Rise F, Wilkins AL, Miles CO (2014) Epimers of azaspiracids: isolation, structural elucidation, relative LC-MS response, and in vitro toxicity of 37-epi-azaspiracid-1. Chem Res Toxicol 27:587–600CrossRefGoogle Scholar
  50. 50.
    Ihnat M (1998) A synopsis of different approaches to the certification of reference materials. Fresenius J Anal Chem 360:308–311CrossRefGoogle Scholar
  51. 51.
    Burton IW, Quilliam MA, Walter JA (2005) Quantitative 1H NMR with external standards: use in preparation of calibration solutions for algal toxins and other natural products. Anal Chem 77:3123–3131CrossRefGoogle Scholar
  52. 52.
    ISO-guide-35 (2006) Reference materials—general statistics and principles for certification. REMCO.Google Scholar
  53. 53.
    BIPM (1995) Guide to the expression of uncertainty in measurement, 1st edition. International Organisation for Standardisation (ISO). GenevaGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada as represented by: National Research Council of Canada 2014

Authors and Affiliations

  • Pearse McCarron
    • 1
    • 2
    Email author
  • Sabrina D. Giddings
    • 1
  • Kelley L. Reeves
    • 1
  • Philipp Hess
    • 2
    • 3
  • Michael A. Quilliam
    • 1
  1. 1.National Research Council of Canada, Measurement Science and Standards, Biotoxin MetrologyHalifaxCanada
  2. 2.Marine InstituteGalwayIreland
  3. 3.IfremerNantesFrance

Personalised recommendations