Analytical and Bioanalytical Chemistry

, Volume 406, Issue 25, pp 6347–6362 | Cite as

Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms

  • Eva Woltmann
  • Hans Meyer
  • Diana Weigel
  • Heinz Pritzke
  • Tjorben N. Posch
  • Pablo A. Kler
  • Klaus Schürmann
  • Jörg Roscher
  • Carolin HuhnEmail author
Research Paper


High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.


Tablet analysis Solid-state fluorescence spectroscopy Grain size Photobleaching Scattering effects Homogeneity 



We thank Jennifer Oppenberg (University of Münster, Germany) for her introduction to the fabrication of tablets. The help of Dr Jan Pöggeler (Forschungszentrum Jülich, Germany) is gratefully acknowledged. This project was partially funded by the Federal Ministry of Education and Research (BMBF), FZK: 13 N12012. This work was partially funded by the Excellence Initiative, a jointly funded program of the German federal and state governments, organized by the German Research Foundation (DFG).


  1. 1.
    Aaltonen J, Gordon KC, Strachan CJ, Rades T (2008) Perspectives in the use of spectroscopy to characterise pharmaceutical solids. Int J Pharm 364(2):159–169CrossRefGoogle Scholar
  2. 2.
    Jivraj M, Martini LG, Thomson CM (2000) An overview of the different excipients useful for the direct compression of tablets. Pharmaceut Sci Tech Today 3(2):58–63CrossRefGoogle Scholar
  3. 3.
    Boukouvala F, Niotis V, Ramachandran R, Muzzio FJ, Ierapetritou MG (2012) An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process. Comput Chem Eng 42(0):30–47CrossRefGoogle Scholar
  4. 4.
    Abu Bakar NF, Mujumdar A, Urabe S, Takano K, Nishii K, Horio M (2007) Improvement of sticking tendency of granules during tabletting process by pressure swing granulation. Powder Technol 176(2–3):137–147CrossRefGoogle Scholar
  5. 5.
    Zarie ES, Kaidas V, Gedamu D, Mishra YK, Adelung R, Furkert FH, Scherließ R, Steckel H, Groessner-Schreiber B (2012) Solvent free fabrication of micro and nanostructured drug coatings by thermal evaporation for controlled release and increased effects. PLoS One 7(8):e40746CrossRefGoogle Scholar
  6. 6.
    Rodionova OY, Houmøller LP, Pomerantsev AL, Geladi P, Burger J, Dorofeyev VL, Arzamastsev AP (2005) NIR spectrometry for counterfeit drug detection: A feasibility study. Anal Chim Acta 549(1–2):151–158CrossRefGoogle Scholar
  7. 7.
    Dégardin K, Roggo Y, Been F, Margot P (2011) Detection and chemical profiling of medicine counterfeits by Raman spectroscopy and chemometrics. Anal Chim Acta 705(1):334–341CrossRefGoogle Scholar
  8. 8.
    Been F, Roggo Y, Degardin K, Esseiva P, Margot P (2011) Profiling of counterfeit medicines by vibrational spectroscopy. Forensic Sci Int 211(1–3):83–100CrossRefGoogle Scholar
  9. 9.
    Holzgrabe U (2009) Problem Arzneimittelfälschungen in Afrika und Südostasien. Gefälschte Antimalariamittel und mehr. Pharm Unserer Zeit 38(6):560–562CrossRefGoogle Scholar
  10. 10.
    Mizobe Y, Hinoue T, Yamamoto A, Hisaki I, Miyata M, Hasegawa Y, Tohnai N (2009) Systematic Investigation of Molecular Arrangements and Solid‐State Fluorescence Properties on Salts of Anthracene‐2, 6‐disulfonic Acid with Aliphatic Primary Amines. Chem-A Eur J 15(33):8175–8184CrossRefGoogle Scholar
  11. 11.
    Wehry EL (1997) Molecular fluorescence and phosphorescence spectrometry. In: Settle F (ed) Handbook of instrumental techniques for analytical chemistry, 1st. edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. 12.
    Navalón A, Blanc R, del Olmo M, Vilchez JL (1999) Simultaneous determination of naproxen, salicylic acid and acetylsalicylic acid by spectrofluorimetry using partial least-squares (PLS) multivariate calibration. Talanta 48(2):469–475CrossRefGoogle Scholar
  13. 13.
    Moreira AB, Dias ILT, Neto GO, Zagatto EAG, Kubota LT (2004) Solid-phase fluorescence spectroscopy for the determination of acetylsalicylic acid in powdered pharmaceutical samples. Anal Chim Acta 523(1):49–52CrossRefGoogle Scholar
  14. 14.
    Martens H, Nielsen JP, Engelsen SB (2003) Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures. Anal Chem 75(3):394–404CrossRefGoogle Scholar
  15. 15.
    Kessler W (2007) Multivariate Datenanalyse für die Pharma-, Bio- und Prozessanalytik. Wiley-VCH, WeinheimGoogle Scholar
  16. 16.
    Heraud P, Wood BR, Beardall J, McNaughton D (2006) Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom 20(5):193–197CrossRefGoogle Scholar
  17. 17.
    Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharm Biomed Anal 44(3):683–700CrossRefGoogle Scholar
  18. 18.
    Song L, Hennink E, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68(6):2588–2600CrossRefGoogle Scholar
  19. 19.
    Oujja M, Vázquez-Calvo C, Sanz M, Buergo MÁ, Fort R, Castillejo M (2012) Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates. Anal Bioanal Chem 402(4):1433–1441CrossRefGoogle Scholar
  20. 20.
    Kim M, Chung H, Woo Y, Kemper M (2006) New reliable Raman collection system using the wide area illumination (WAI) scheme combined with the synchronous intensity correction standard for the analysis of pharmaceutical tablets. Anal Chim Acta 579(2):209–216CrossRefGoogle Scholar
  21. 21.
    Villari A, Micali N, Fresta M, Puglisi G (1992) Simultaneous spectrophotometric determination in solid phase of aspirin and its impurity salicylic acid in pharmaceutical formulations. J Pharm Sci 81(9):895–898CrossRefGoogle Scholar
  22. 22.
    Head W (1961) Investigation of the applicability of solid state fluorescence to pharmaceutical analysis. J Pharm Sci 50(12):1041–1044CrossRefGoogle Scholar
  23. 23.
    Edwards L (1950) The hydrolysis of aspirin. A determination of the thermodynamic dissociation constant and a study of the reaction kinetics by ultra-violet spectrophotometry. Trans Faraday Soc 46:723–735CrossRefGoogle Scholar
  24. 24.
    Milofsky R, Bauer E (1997) Capillary electrophoresis with post-column addition of terbium and sensitized lanthanide-ion luminescence detection for the determination of diflunisal and salicylic acid. J High Resolut Chromatogr 20(12):638–642CrossRefGoogle Scholar
  25. 25.
    Chen RF (1967) Some characteristics of the fluorescence of quinine. Anal Biochem 19(2):374–387CrossRefGoogle Scholar
  26. 26.
    Merckle P, Kovar K-A (1998) Assay of effervescent tablets by near-infrared spectroscopy in transmittance and reflectance mode: acetylsalicylic acid in mono and combination formulations. J Pharm Biomed Anal 17(3):365–374CrossRefGoogle Scholar
  27. 27.
    Earnshaw CJ, Carolan VA, Richards DS, Clench MR (2010) Direct analysis of pharmaceutical tablet formulations using matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun Mass Spectrom 24(11):1665–1672CrossRefGoogle Scholar
  28. 28.
    Sasic S, Kong A, Kaul G (2013) Determining API domain sizes in pharmaceutical tablets and blends upon varying milling conditions by near-infrared chemical imaging. Anal Methods 5(9):2360–2368CrossRefGoogle Scholar
  29. 29.
    Cruz J, Blanco M (2011) Content uniformity studies in tablets by NIR-CI. J Pharm Biomed Anal 56(2):408–412CrossRefGoogle Scholar
  30. 30.
    Nakamoto K, Urasaki T, Hondo S, Murahashi N, Yonemochi E, Terada K (2013) Evaluation of the crystalline and amorphous states of drug products by nanothermal analysis and Raman imaging. J Pharm Biomed Anal 75:105–111CrossRefGoogle Scholar
  31. 31.
    Puchert T, Lochmann D, Menezes JC, Reich G (2010) Near-infrared chemical imaging (NIR-CI) for counterfeit drug identification—A four-stage concept with a novel approach of data processing (Linear Image Signature). J Pharm Biomed Anal 51(1):138–145CrossRefGoogle Scholar
  32. 32.
    Vredenbregt MJ, Blok-Tip L, Hoogerbrugge R, Barends DM, Dd K (2006) Screening suspected counterfeit Viagra® and imitations of Viagra® with near-infrared spectroscopy. J Pharm Biomed Anal 40(4):840–849CrossRefGoogle Scholar
  33. 33.
    Lai C-K, Holt D, Leung JC, Cooney CL, Raju GK, Hansen P (2001) Real time and noninvasive monitoring of dry powder blend homogeneity. AlChE J 47(11):2618–2622CrossRefGoogle Scholar
  34. 34.
    Morisseau K, Rhodes C (1997) Near-Infrared Spectroscopy as a Nondestructive Alternative to Conventional Tablet Hardness Testing. Pharm Res 14(1):108–111CrossRefGoogle Scholar
  35. 35.
    Blanco M, Alcalá M, González JM, Torras E (2006) A process analytical technology approach based on near infrared spectroscopy: Tablet hardness, content uniformity, and dissolution test measurements of intact tablets. J Pharm Sci 95(10):2137–2144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eva Woltmann
    • 1
  • Hans Meyer
    • 2
  • Diana Weigel
    • 3
  • Heinz Pritzke
    • 4
  • Tjorben N. Posch
    • 1
  • Pablo A. Kler
    • 1
    • 5
  • Klaus Schürmann
    • 6
  • Jörg Roscher
    • 7
  • Carolin Huhn
    • 1
    • 5
    Email author
  1. 1.Central Institute for Engineering, Electronics and Analytics: Analytics (ZEA-3)Forschungszentrum JülichJülichGermany
  2. 2.J&M Analytik AGEssingenGermany
  3. 3.Federal Criminal Police OfficeForensic Science Institute, KT 34 – ToxicologyWiesbadenGermany
  4. 4.Glatt Systemtechnik GmbHDresdenGermany
  5. 5.Institute of Physical and Theoretical ChemistryEberhard Karls Universität TübingenTübingenGermany
  6. 6.LabCognition Analytical Software GmbH & Co. KGKölnGermany
  7. 7.Institute of Inorganic and Analytical ChemistryWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations