Analytical and Bioanalytical Chemistry

, Volume 407, Issue 1, pp 265–277 | Cite as

Evaluation of detection sensitivity in comprehensive two-dimensional liquid chromatography separations of an active pharmaceutical ingredient and its degradants

  • Dwight R. StollEmail author
  • Eric S. Talus
  • David C. Harmes
  • Kelly Zhang
Research Paper
Part of the following topical collections:
  1. Multidimensional Chromatography


In this paper, we describe the findings of a study aimed at assessing the detection sensitivity of comprehensive two-dimensional high-performance liquid chromatography (LCxLC) separation of a degraded active pharmaceutical ingredient (API) with UV absorption as the detection technique. Specifically, we have examined the impact of the volume and solvent composition (referred to as “interface conditions”) of fractions of first-dimension column effluent transferred to the second dimension for further separation on the ability to resolve and detect low-abundance compounds. Historically, LCxLC has been perceived as being inferior to 1D-LC from the point of view of detection sensitivity. In this work, we demonstrate that LCxLC is sufficiently sensitive to be useful in the pharmaceutical context where in general impurities present at 0.05 % (relative to the API concentration) should be quantified. Moreover, we find that this level of sensitivity is only attained under certain conditions: dilution of the first column effluent with weak solvent (water in this case) prior to injection into the second-dimension column is very beneficial because it promotes focusing of the analyte band in the second column, thereby improving the detection sensitivity of the LCxLC system; and, quantitation limits are also a strong function of peak location in the second-dimension separation window, where baseline disturbances near the dead time of the second column can limit reliable detection of low-abundance compounds.


Liquid chromatography Comprehensive Two dimensional Pharmaceutical analysis Sensitivity Degradation 



E.T. was supported by a gift from Agilent Technologies University Relations. D.S. was supported by a grant from the National Science Foundation (CHE-1213364) and a gift from Agilent Technologies University Relations. The 1290 Infinity 2D-LC system and HPLC columns used in this work were provided by Agilent Technologies. The LC Image software used to produce the LCxLC chromatograms shown here was provided by GC Image.

Supplementary material

216_2014_8036_MOESM1_ESM.pdf (480 kb)
ESM 1 (PDF 480 kb)


  1. 1.
    Potts LW, Carr PW (2013) Analysis of the temporal performance of one versus on-line comprehensive two-dimensional liquid chromatography. J Chromatogr A 1310:37–44. doi: 10.1016/j.chroma.2013.07.102 CrossRefGoogle Scholar
  2. 2.
    Guiochon G, Marchetti N, Mriziq K, Shalliker R (2008) Implementations of two-dimensional liquid chromatography. J Chromatogr A 1189:109–168. doi: 10.1016/j.chroma.2008.01.086 CrossRefGoogle Scholar
  3. 3.
    Vivó-Truyols G, van der Wal S, Schoenmakers PJ (2010) Comprehensive study on the optimization of online two-dimensional liquid chromatographic systems considering losses in theoretical peak capacity in first and second-dimensions: a Pareto-optimality approach. Anal Chem 82:8525–8536. doi: 10.1021/ac101420f CrossRefGoogle Scholar
  4. 4.
    Davis JM, Stoll DR, Carr PW (2008) Effect of first-dimension under sampling on effective peak capacity in comprehensive two-dimensional separations. Anal Chem 80:461–473. doi: 10.1021/ac071504j CrossRefGoogle Scholar
  5. 5.
    Horie K, Kimura H, Ikegami T, Iwatsuka A, Saad N, Fiehn O, Tanaka N (2007) Calculating optimal modulation periods to maximize the peak capacity in two-dimensional HPLC. Anal Chem 79:3764–3770. doi: 10.1021/ac062002t CrossRefGoogle Scholar
  6. 6.
    Potts LW, Stoll DR, Li X, Carr PW (2010) The impact of sampling time on peak capacity and analysis speed in on-line comprehensive two-dimensional liquid chromatography. J Chromatogr A 1217:5700–5709. doi: 10.1016/j.chroma.2010.07.009 CrossRefGoogle Scholar
  7. 7.
    Murphy RE, Schure MR, Foley JP (1998) Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem 70:1585–1594. doi: 10.1021/ac971184b CrossRefGoogle Scholar
  8. 8.
    Huang Y, Gu H, Filgueira M, Carr PW (2011) An experimental study of sampling time effects on the resolving power of on-line two-dimensional high performance liquid chromatography. J Chromatogr A 1218:2984–2994. doi: 10.1016/j.chroma.2011.03.032 CrossRefGoogle Scholar
  9. 9.
    Stoll DR, Wang X, Carr PW (2008) Comparison of the practical resolving power of one and two-dimensional high-performance liquid chromatography analysis of metabolomic samples. Anal Chem 80:268–278. doi: 10.1021/ac701676b CrossRefGoogle Scholar
  10. 10.
    Gilar M, Fridrich J, Schure MR, Jaworski A (2012) Comparison of orthogonality estimation methods for the two-dimensional separations of peptides. Anal Chem 84:8722–8732. doi: 10.1021/ac3020214 CrossRefGoogle Scholar
  11. 11.
    Rutan SC, Davis JM, Carr PW (2011) Fractional coverage metrics based on ecological home range for calculation of the effective peak capacity in comprehensive two-dimensional separations. J Chromatogr A 1255:267–276. doi: 10.1016/j.chroma.2011.12.061 CrossRefGoogle Scholar
  12. 12.
    Al Bakain R, Rivals I, Sassiat P, Thiébaut D, Hennion M-C, Euvrard G, Vial J (2011) Comparison of different statistical approaches to evaluate the orthogonality of chromatographic separations: application to reverse phase systems. J Chromatogr A 1218:2963–2975. doi: 10.1016/j.chroma.2011.03.031 CrossRefGoogle Scholar
  13. 13.
    Schure M (2008) In: Schure M, Cohen S (eds) Multidimensional liquid chromatography: theory and applications in industrial chemistry and the life sciences, Wiley-Interscience, HobokenGoogle Scholar
  14. 14.
    Schure MR (1999) Limit of detection, dilution factors, and technique compatibility in multidimensional separations utilizing chromatography, capillary electrophoresis, and field-flow fractionation. Anal Chem 71:1645–1657. doi: 10.1021/ac981128q CrossRefGoogle Scholar
  15. 15.
    Horváth K, Fairchild JN, Guiochon G (2009) Detection issues in two-dimensional on-line chromatography. J Chromatogr A 1216:7785–7792. doi: 10.1016/j.chroma.2009.09.016 CrossRefGoogle Scholar
  16. 16.
    (2006) International Conference on Harmonization (ICH) Guidelines Q3A (R2). Impurities in new drug substances. International Conference on Harmonization. Accessed 24 July 2014
  17. 17.
    (2005) International Conference on Harmonization (ICH) Guidelines Q2(R1). Validation of analytical procedures: text and methodology. International Conference on Harmonization. Accessed 24 July 2014
  18. 18.
    Huidobro AL, Pruim P, Schoenmakers P, Barbas C (2008) Ultra rapid liquid chromatography as second dimension in a comprehensive two-dimensional method for the screening of pharmaceutical samples in stability and stress studies. J Chromatogr A 1190:182–190. doi: 10.1016/j.chroma.2008.02.114 CrossRefGoogle Scholar
  19. 19.
    Zhang K, Wang J, Tsang M, Wigman L, Chetwyn N (2013) Two-dimensional HPLC in pharmaceutical analysis. Am Pharm RevGoogle Scholar
  20. 20.
    Alexander AJ, Ma L (2009) Comprehensive two-dimensional liquid chromatography separations of pharmaceutical samples using dual fused-core columns in the 2nd dimension. J Chromatogr A 1216:1338–1345. doi: 10.1016/j.chroma.2008.12.063 CrossRefGoogle Scholar
  21. 21.
    (1996) International Conference on Harmonization (ICH) Guidelines Q1B. Stability testing: photostability testing of new drug substances and products. International Conference on Harmonization. Accessed 24 July 2014.
  22. 22.
    Filgueira MR, Huang Y, Witt K, Castells C, Carr PW (2011) Improving peak capacity in fast online comprehensive two-dimensional liquid chromatography with post-first-dimension flow splitting. Anal Chem 83:9531–9539. doi: 10.1021/ac202317m CrossRefGoogle Scholar
  23. 23.
    Guiochon G, Colin H (1984) Narrow-bore and micro-bore columns in liquid chromatography. Microcolumn high perform, Liq. Chromatogr. Elsevier, Amsterdam, pp 6–9Google Scholar
  24. 24.
    Mills M, Maltas J, Johnlough W (1997) Assessment of injection volume limits when using on-column focusing with microbore liquid chromatography. J Chromatogr A 759:1–11. doi: 10.1016/S0021-9673(96)00753-4 CrossRefGoogle Scholar
  25. 25.
    Bakalyar SR, Phipps C, Spruce B, Olsen K (1997) Choosing sample volume to achieve maximum detection sensitivity and resolution with high-performance liquid chromatography columns of 1.0, 2.1 and 4.6 mm I.D. J Chromatogr A 762:167–185. doi: 10.1016/S0021-9673(96)00851-5 CrossRefGoogle Scholar
  26. 26.
    Layne J, Farcas T, Rustamov I, Ahmed F (2001) Volume-load capacity in fast-gradient liquid chromatography. J Chromatogr A 913:233–242. doi: 10.1016/S0021-9673(00)01199-7 CrossRefGoogle Scholar
  27. 27.
    Vukmanic D, Chiba M (1989) Effect of organic solvents in sample solutions and injection volumes on chromatographic peak profiles of analytes in reversed-phase high-performance liquid chromatography. J Chromatogr A 483:189–196. doi: 10.1016/S0021-9673(01)93121-8 CrossRefGoogle Scholar
  28. 28.
    Oda Y, Asakawa N, Kajima T, Yoshida Y, Sato T (1991) On-line determination and resolution of verapamil enantiomers by high-performance liquid chromatography with column switching. J Chromatogr A 541:411–418. doi: 10.1016/S0021-9673(01)96013-3 CrossRefGoogle Scholar
  29. 29.
    Groskreutz SR, Swenson MM, Secor LB, Stoll DR (2012) Selective comprehensive multi-dimensional separation for resolution enhancement in high performance liquid chromatography, part I—principles and instrumentation. J Chromatogr A 1228:31–40. doi: 10.1016/j.chroma.2011.06.035 CrossRefGoogle Scholar
  30. 30.
    Bedani F, Kok WT, Janssen H-G (2009) Optimal gradient operation in comprehensive liquid chromatography × liquid chromatography systems with limited orthogonality. Anal Chim Acta 654:77–84. doi: 10.1016/j.aca.2009.06.042 CrossRefGoogle Scholar
  31. 31.
    Groskreutz SR, Weber SG (2014) Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography. J Chromatogr A. doi: 10.1016/j.chroma.2014.05.056arial Google Scholar
  32. 32.
    Eghbali H, Sandra K, Tienpont B, Eeltink S, Sandra P, Desmet G (2012) Exploring the possibilities of cryogenic cooling in liquid chromatography for biological applications: a proof of principle. Anal Chem 84:2031–2037. doi:  10.1021/ac203252u
  33. 33.
    Verstraeten M, Pursch M, Eckerle P, Luong J, Desmet G (2011) Thermal modulation for multidimensional liquid chromatography separations using low-thermal-mass liquid chromatography (LC). Anal Chem 83:7053–7060. doi: 10.1021/ac201207t CrossRefGoogle Scholar
  34. 34.
    Verstraeten M, Pursch M, Eckerle P, Luong J, Desmet G (2011) Modelling the thermal behaviour of the low-thermal mass liquid chromatography system. J Chromatogr A 1218:2252–2263. doi: 10.1016/j.chroma.2011.02.023 CrossRefGoogle Scholar
  35. 35.
    Cao L, Yu D, Wang X, Ke Y, Jin Y, Liang X (2011) The development of an evaluation method for capture columns used in two-dimensional liquid chromatography. Anal Chim Acta 706:184–190. doi: 10.1016/j.aca.2011.08.009 CrossRefGoogle Scholar
  36. 36.
    Yamamoto E, Niijima J, Asakawa N (2013) Selective determination of potential impurities in an active pharmaceutical ingredient using HPLC-SPE-HPLC. J Pharm Biomed Anal 84:41–47. doi: 10.1016/j.jpba.2013.05.033 CrossRefGoogle Scholar
  37. 37.
    Stoll DR, Groskreutz SR (2013) Theory and practice of two-dimensional liquid chromatography separations involving the HILIC mode of separation. Hydrophilic Interact. Chromatogr. Guide Pract. Wiley, pp 265–305Google Scholar
  38. 38.
    Stoll DR, Li X, Wang X, Carr PW, Porter SEG, Rutan SC (2007) Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 1168:3–43. doi: 10.1016/j.chroma.2007.08.054 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dwight R. Stoll
    • 1
    Email author
  • Eric S. Talus
    • 1
  • David C. Harmes
    • 1
  • Kelly Zhang
    • 2
  1. 1.Gustavus Adolphus CollegeSt. PeterUSA
  2. 2.Genentech, 1 DNA WaySouth San FranciscoUSA

Personalised recommendations