Skip to main content

A paper-based lateral flow assay for morphine

Abstract

Morphine was used as a model analyte to examine the possibility of using cellulose, physically modified by papermaking and converting techniques, as a capillary matrix in a lateral flow type of diagnostic assay. This research was directed toward low-cost, disposable, and portable paper-based diagnostics, with the aim of addressing the analytical performance of paper as a substrate in the analysis for drugs of abuse. Antibody Fab fragments were used as sensing molecules, and gold nanoparticle detection was employed. Inkjet printing was used to pattern sensing biomolecules as detection zones on paper. To validate the usefulness of paper as a diagnostic platform, the principle of a direct sandwich assay, based on immunocomplex formation between morphine and the anti-morphine Fab fragment and detection of the formed immunocomplex by another Fab fragment, was implemented. Results were compared with that achieved by using nitrocellulose as a reference material. Possible interfering from the sample matrix on assay quality was investigated with spiked oral fluid samples. Under optimized conditions, a visually assessed limit of detection for the sandwich assay was 1 ng/mL, indicating that the paper-based test devices developed in this work can perform screening for drugs of abuse and can fulfill the requirement for a sensitive assay in diagnostically relevant ranges.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Luppa PB, Müller C, Schlichtiger A, Schlebusch H (2011) Point-of-care testing (POCT): current techniques and future perspectives. TrAC Trends Anal Chem 30:887–898. doi:10.1016/j.trac.2011.01.019

    CAS  Article  Google Scholar 

  2. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2011) Point of care diagnostics: status and future. Anal Chem 84:487–515. doi:10.1021/ac2030199

    Article  Google Scholar 

  3. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582. doi:10.1007/s00216-008-2287-2

    CAS  Article  Google Scholar 

  4. Warsinke A (2009) Point-of-care testing of proteins. Anal Bioanal Chem 393:1393–1405. doi:10.1007/s00216-008-2572-0 [doi]

    CAS  Article  Google Scholar 

  5. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301–1130113. doi:10.1063/1.3687398

    Article  Google Scholar 

  6. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320. doi:10.1002/anie.200603817

    CAS  Article  Google Scholar 

  7. Byrnes S, Thiessen G, Fu E (2013) Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis 5:2821–2836. doi:10.4155/bio.13.243

    CAS  Article  Google Scholar 

  8. Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457. doi:10.1039/c2cs35255a

    CAS  Article  Google Scholar 

  9. Rozand C (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 33:147–156. doi:10.1007/s10096-013-1945-2

    CAS  Article  Google Scholar 

  10. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi:10.1021/ac9013989

    CAS  Article  Google Scholar 

  11. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597. doi:10.1016/j.bios.2013.10.075

    CAS  Article  Google Scholar 

  12. Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129. doi:10.1021/am800043z

    CAS  Article  Google Scholar 

  13. Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218. doi:10.1016/j.bios.2011.10.019 [doi]

    Article  Google Scholar 

  14. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed Engl 49:4771–4774. doi:10.1002/anie.201001005

    CAS  Article  Google Scholar 

  15. Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA (2013) Optimization of a paper-based ELISA for a human performance biomarker. Anal Chem 85:11634–11642. doi:10.1021/ac403040a

    CAS  Article  Google Scholar 

  16. Soga T, Jimbo Y, Suzuki K, Citterio D (2013) Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines. Anal Chem 85:8973–8978. doi:10.1021/ac402070z

    CAS  Article  Google Scholar 

  17. Hoppmann EP, Yu WW, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63:219–224. doi:10.1016/j.ymeth.2013.07.010

    CAS  Article  Google Scholar 

  18. Liu Q, Wang J, Wang B, Li Z, Huang H, Li C, Yu X, Chu PK (2014) Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosens Bioelectron 54:128–134. doi:10.1016/j.bios.2013.10.067

    CAS  Article  Google Scholar 

  19. Li B, Zhang W, Chen L, Lin B (2013) A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device. Electrophoresis 34:2162–2168. doi:10.1002/elps.201300138

    CAS  Article  Google Scholar 

  20. Li B, Fu L, Zhang W, Feng W, Chen L (2014) Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle. Electrophoresis 35:1152–1159. doi:10.1002/elps.201300583

    CAS  Article  Google Scholar 

  21. De Lange V, Vörös J (2014) Twist on protein microarrays: layering wax-patterned nitrocellulose to create customizable and separable arrays of multiplexed affinity columns. Anal Chem 86:4209–4216. doi:10.1021/ac501211m

    Article  Google Scholar 

  22. López Marzo AM, Pons J, Blake DA, Merkoçi A (2013) All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal Chem 85:3532–3538. doi:10.1021/ac3034536

    Article  Google Scholar 

  23. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283. doi:10.1103/PhysRev.17.273

    Article  Google Scholar 

  24. Mendez S, Fenton EM, Gallegos GR, Petsev DN, Sibbett SS, Stone HA, Zhang Y, Lopez GP (2010) Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26:1380–1385. doi:10.1021/la902470b

    CAS  Article  Google Scholar 

  25. Fu E, Lutz B, Kauffman P, Yager P (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920. doi:10.1039/b919614e

    CAS  Article  Google Scholar 

  26. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. doi:10.1021/ac300689s

    CAS  Article  Google Scholar 

  27. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal Chem 28:925–942. doi:10.1016/j.trac.2009.05.005

    CAS  Article  Google Scholar 

  28. Wang J, Yiu B, Obermeyer J, Filipe CD, Brennan JD, Pelton R (2012) Effects of temperature and relative humidity on the stability of paper-immobilized antibodies. Biomacromolecules Biomacromolecules 13:559–564. doi:10.1021/bm2017405 [doi]

    Article  Google Scholar 

  29. Wu G, Srivastava J, Zaman MH (2014) Stability measurements of antibodies stored on paper. Anal Biochem 449:147–154. doi:10.1016/j.ab.2013.12.012

    CAS  Article  Google Scholar 

  30. Khan MS, Li X, Shen W, Garnier G (2010) Thermal stability of bioactive enzymatic papers. Colloids Surf B: Biointerfaces 75:239–246. doi:10.1016/j.colsurfb.2009.08.042

    CAS  Article  Google Scholar 

  31. Vearrier D, Curtis JA, Greenberg MI (2010) Biological testing for drugs of abuse. EXS 100:489–517. doi:10.1007/978-3-7643-8338-1_14

    CAS  Google Scholar 

  32. Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55:1910–1931. doi:10.1373/clinchem.2008.108670

    CAS  Article  Google Scholar 

  33. Garside D, Hargrove RL, Winecker RE (2009) Concentration of oxymorphone in postmortem fluids and tissue. J Anal Toxicol 33:121–128. doi:10.1093/jat/33.3.121

    CAS  Article  Google Scholar 

  34. Knittel JL, Clay DJ, Bailey KM, Gebhardt MA, Kraner JC (2009) Comparison of oxycodone in vitreous humor and blood using EMIT screening and gas chromatographic-mass spectrometric quantitation. J Anal Toxicol 33:433–438. doi:10.1093/jat/33.8.433

    CAS  Article  Google Scholar 

  35. Krasowski MD, Pizon AF, Siam MG, Giannoutsos S, Iyer M, Ekins S (2009) Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg Med 9:5-227X-9-5. Doi:10.1186/1471-227X-9-5

  36. Pulli T, Hoyhtya M, Soderlund H, Takkinen K (2005) One-step homogeneous immunoassay for small analytes. Anal Chem 77:2637–2642. doi:10.1021/ac048379l

    CAS  Article  Google Scholar 

  37. Lappalainen T, Teerinen T, Vento P, Hakalahti L, Erho T (2010) Cellulose as a novel substrate for lateral flow assay. Nord Pulp Pap Res J 25:536–550. doi:10.3183/NPPRJ-2010-25-04-p536-550

    CAS  Article  Google Scholar 

  38. Mannila R, Pulli T, Saari H, Tappura K, Tuppurainen J, Välimäki H, Niskanen A (2007) Fluorescence based fast diagnostics platform for the direct and indirect immunodiagnostic analysis methods. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6628

  39. Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture assay designs. Methods Mol Biol 381:59–92. doi:10.1007/978-1-59745-303-5_3

  40. Jeyachandran YL, Mielczarski E, Rai B, Mielczarski JA (2009) Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir 25:11614–11620. doi:10.1021/la901453a

    CAS  Article  Google Scholar 

  41. Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. Colloids Surf Physicochem Eng Asp 302:525–531. doi:10.1016/j.colsurfa.2007.03.025

    CAS  Article  Google Scholar 

  42. Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356:60–69. doi:10.1016/j.jim.2010.02.007

    CAS  Article  Google Scholar 

  43. Sampson WW (2009) Materials properties of paper as influenced by its fibrous architecture. Int Mater Rev 54:134–156. doi:10.1179/174328009X411154

    CAS  Article  Google Scholar 

  44. Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, Wright DW, Narayan RJ (2006) Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol J 1:976–987. doi:10.1002/biot.200600123

    CAS  Article  Google Scholar 

  45. Wu P, Castner DG, Grainger DW (2008) Diagnostic devices as biomaterials: a review of nucleic acid and protein microarray surface performance issues. J Biomater Sci Polym Ed 19:725–753. doi:10.1163/156856208784522092

    CAS  Article  Google Scholar 

  46. Phillips CO, Govindarajan S, Hamblyn SM, Conlan RS, Gethin DT, Claypole TC (2012) Patterning of antibodies using flexographic printing. Langmuir 28:9878–9884. doi:10.1021/la300867m

    CAS  Article  Google Scholar 

  47. Kong F, Hu YF (2012) Biomolecule immobilization techniques for bioactive paper fabrication. Anal Bioanal Chem 403:7–13. doi:10.1007/s00216-012-5821-1

    CAS  Article  Google Scholar 

  48. Rosa AMM, Louro AF, Martins SAM, Inácio J, Azevedo AM, Prazeres DMF (2014) Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal Chem 86:4340–4347. doi:10.1021/ac5001288

    CAS  Article  Google Scholar 

  49. Barroso M, Gallardo E, Vieira DN, Queiroz JA, López-Rivadulla M (2011) Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal Bioanal Chem 400:1665–1690. doi:10.1007/s00216-011-4888-4

    CAS  Article  Google Scholar 

  50. Bush DM (2008) The U.S. Mandatory Guidelines for Federal Workplace Drug Testing Programs: current status and future considerations. Forensic Sci Int 174:111–119. doi:10.1007/978-1-59745-303-5_3

Download references

Acknowledgments

We gratefully acknowledge the support from the Finnish Funding Agency for Technology and Innovation (TEKES). Dr. Tarja Nevanen is thanked for helpful discussion, Kariitta Berg for antibody supply, and Rami Mannila for reader development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuija Teerinen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teerinen, T., Lappalainen, T. & Erho, T. A paper-based lateral flow assay for morphine. Anal Bioanal Chem 406, 5955–5965 (2014). https://doi.org/10.1007/s00216-014-8001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8001-7

Keywords

  • Paper-based
  • Drugs of abuse
  • Recombinant antibody
  • Immunocomplex assay
  • Point-of-care diagnostics
  • Low resource
  • Capillary action