Analytical and Bioanalytical Chemistry

, Volume 406, Issue 24, pp 5955–5965 | Cite as

A paper-based lateral flow assay for morphine

  • Tuija TeerinenEmail author
  • Timo Lappalainen
  • Tomi Erho
Research Paper


Morphine was used as a model analyte to examine the possibility of using cellulose, physically modified by papermaking and converting techniques, as a capillary matrix in a lateral flow type of diagnostic assay. This research was directed toward low-cost, disposable, and portable paper-based diagnostics, with the aim of addressing the analytical performance of paper as a substrate in the analysis for drugs of abuse. Antibody Fab fragments were used as sensing molecules, and gold nanoparticle detection was employed. Inkjet printing was used to pattern sensing biomolecules as detection zones on paper. To validate the usefulness of paper as a diagnostic platform, the principle of a direct sandwich assay, based on immunocomplex formation between morphine and the anti-morphine Fab fragment and detection of the formed immunocomplex by another Fab fragment, was implemented. Results were compared with that achieved by using nitrocellulose as a reference material. Possible interfering from the sample matrix on assay quality was investigated with spiked oral fluid samples. Under optimized conditions, a visually assessed limit of detection for the sandwich assay was 1 ng/mL, indicating that the paper-based test devices developed in this work can perform screening for drugs of abuse and can fulfill the requirement for a sensitive assay in diagnostically relevant ranges.


Paper-based Drugs of abuse Recombinant antibody Immunocomplex assay Point-of-care diagnostics Low resource Capillary action 



We gratefully acknowledge the support from the Finnish Funding Agency for Technology and Innovation (TEKES). Dr. Tarja Nevanen is thanked for helpful discussion, Kariitta Berg for antibody supply, and Rami Mannila for reader development.

Supplementary material

216_2014_8001_MOESM1_ESM.pdf (154 kb)
ESM 1 (PDF 38 kb)


  1. 1.
    Luppa PB, Müller C, Schlichtiger A, Schlebusch H (2011) Point-of-care testing (POCT): current techniques and future perspectives. TrAC Trends Anal Chem 30:887–898. doi: 10.1016/j.trac.2011.01.019 CrossRefGoogle Scholar
  2. 2.
    Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2011) Point of care diagnostics: status and future. Anal Chem 84:487–515. doi: 10.1021/ac2030199 CrossRefGoogle Scholar
  3. 3.
    Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582. doi: 10.1007/s00216-008-2287-2 CrossRefGoogle Scholar
  4. 4.
    Warsinke A (2009) Point-of-care testing of proteins. Anal Bioanal Chem 393:1393–1405. doi: 10.1007/s00216-008-2572-0 [doi] CrossRefGoogle Scholar
  5. 5.
    Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301–1130113. doi: 10.1063/1.3687398 CrossRefGoogle Scholar
  6. 6.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320. doi: 10.1002/anie.200603817 CrossRefGoogle Scholar
  7. 7.
    Byrnes S, Thiessen G, Fu E (2013) Progress in the development of paper-based diagnostics for low-resource point-of-care settings. Bioanalysis 5:2821–2836. doi: 10.4155/bio.13.243 CrossRefGoogle Scholar
  8. 8.
    Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457. doi: 10.1039/c2cs35255a CrossRefGoogle Scholar
  9. 9.
    Rozand C (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 33:147–156. doi: 10.1007/s10096-013-1945-2 CrossRefGoogle Scholar
  10. 10.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10. doi: 10.1021/ac9013989 CrossRefGoogle Scholar
  11. 11.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597. doi: 10.1016/j.bios.2013.10.075 CrossRefGoogle Scholar
  12. 12.
    Fenton EM, Mascarenas MR, Lopez GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129. doi: 10.1021/am800043z CrossRefGoogle Scholar
  13. 13.
    Wang S, Ge L, Song X, Yu J, Ge S, Huang J, Zeng F (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218. doi: 10.1016/j.bios.2011.10.019 [doi] CrossRefGoogle Scholar
  14. 14.
    Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed Engl 49:4771–4774. doi: 10.1002/anie.201001005 CrossRefGoogle Scholar
  15. 15.
    Murdock RC, Shen L, Griffin DK, Kelley-Loughnane N, Papautsky I, Hagen JA (2013) Optimization of a paper-based ELISA for a human performance biomarker. Anal Chem 85:11634–11642. doi: 10.1021/ac403040a CrossRefGoogle Scholar
  16. 16.
    Soga T, Jimbo Y, Suzuki K, Citterio D (2013) Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines. Anal Chem 85:8973–8978. doi: 10.1021/ac402070z CrossRefGoogle Scholar
  17. 17.
    Hoppmann EP, Yu WW, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63:219–224. doi: 10.1016/j.ymeth.2013.07.010 CrossRefGoogle Scholar
  18. 18.
    Liu Q, Wang J, Wang B, Li Z, Huang H, Li C, Yu X, Chu PK (2014) Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosens Bioelectron 54:128–134. doi: 10.1016/j.bios.2013.10.067 CrossRefGoogle Scholar
  19. 19.
    Li B, Zhang W, Chen L, Lin B (2013) A fast and low-cost spray method for prototyping and depositing surface-enhanced Raman scattering arrays on microfluidic paper based device. Electrophoresis 34:2162–2168. doi: 10.1002/elps.201300138 CrossRefGoogle Scholar
  20. 20.
    Li B, Fu L, Zhang W, Feng W, Chen L (2014) Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle. Electrophoresis 35:1152–1159. doi: 10.1002/elps.201300583 CrossRefGoogle Scholar
  21. 21.
    De Lange V, Vörös J (2014) Twist on protein microarrays: layering wax-patterned nitrocellulose to create customizable and separable arrays of multiplexed affinity columns. Anal Chem 86:4209–4216. doi: 10.1021/ac501211m CrossRefGoogle Scholar
  22. 22.
    López Marzo AM, Pons J, Blake DA, Merkoçi A (2013) All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Anal Chem 85:3532–3538. doi: 10.1021/ac3034536 CrossRefGoogle Scholar
  23. 23.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273–283. doi: 10.1103/PhysRev.17.273 CrossRefGoogle Scholar
  24. 24.
    Mendez S, Fenton EM, Gallegos GR, Petsev DN, Sibbett SS, Stone HA, Zhang Y, Lopez GP (2010) Imbibition in porous membranes of complex shape: quasi-stationary flow in thin rectangular segments. Langmuir 26:1380–1385. doi: 10.1021/la902470b CrossRefGoogle Scholar
  25. 25.
    Fu E, Lutz B, Kauffman P, Yager P (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920. doi: 10.1039/b919614e CrossRefGoogle Scholar
  26. 26.
    Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579. doi: 10.1021/ac300689s CrossRefGoogle Scholar
  27. 27.
    Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC Trends Anal Chem 28:925–942. doi: 10.1016/j.trac.2009.05.005 CrossRefGoogle Scholar
  28. 28.
    Wang J, Yiu B, Obermeyer J, Filipe CD, Brennan JD, Pelton R (2012) Effects of temperature and relative humidity on the stability of paper-immobilized antibodies. Biomacromolecules Biomacromolecules 13:559–564. doi: 10.1021/bm2017405 [doi] CrossRefGoogle Scholar
  29. 29.
    Wu G, Srivastava J, Zaman MH (2014) Stability measurements of antibodies stored on paper. Anal Biochem 449:147–154. doi: 10.1016/j.ab.2013.12.012 CrossRefGoogle Scholar
  30. 30.
    Khan MS, Li X, Shen W, Garnier G (2010) Thermal stability of bioactive enzymatic papers. Colloids Surf B: Biointerfaces 75:239–246. doi: 10.1016/j.colsurfb.2009.08.042 CrossRefGoogle Scholar
  31. 31.
    Vearrier D, Curtis JA, Greenberg MI (2010) Biological testing for drugs of abuse. EXS 100:489–517. doi: 10.1007/978-3-7643-8338-1_14 Google Scholar
  32. 32.
    Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55:1910–1931. doi: 10.1373/clinchem.2008.108670 CrossRefGoogle Scholar
  33. 33.
    Garside D, Hargrove RL, Winecker RE (2009) Concentration of oxymorphone in postmortem fluids and tissue. J Anal Toxicol 33:121–128. doi: 10.1093/jat/33.3.121 CrossRefGoogle Scholar
  34. 34.
    Knittel JL, Clay DJ, Bailey KM, Gebhardt MA, Kraner JC (2009) Comparison of oxycodone in vitreous humor and blood using EMIT screening and gas chromatographic-mass spectrometric quantitation. J Anal Toxicol 33:433–438. doi: 10.1093/jat/33.8.433 CrossRefGoogle Scholar
  35. 35.
    Krasowski MD, Pizon AF, Siam MG, Giannoutsos S, Iyer M, Ekins S (2009) Using molecular similarity to highlight the challenges of routine immunoassay-based drug of abuse/toxicology screening in emergency medicine. BMC Emerg Med 9:5-227X-9-5. Doi:10.1186/1471-227X-9-5Google Scholar
  36. 36.
    Pulli T, Hoyhtya M, Soderlund H, Takkinen K (2005) One-step homogeneous immunoassay for small analytes. Anal Chem 77:2637–2642. doi: 10.1021/ac048379l CrossRefGoogle Scholar
  37. 37.
    Lappalainen T, Teerinen T, Vento P, Hakalahti L, Erho T (2010) Cellulose as a novel substrate for lateral flow assay. Nord Pulp Pap Res J 25:536–550. doi: 10.3183/NPPRJ-2010-25-04-p536-550 CrossRefGoogle Scholar
  38. 38.
    Mannila R, Pulli T, Saari H, Tappura K, Tuppurainen J, Välimäki H, Niskanen A (2007) Fluorescence based fast diagnostics platform for the direct and indirect immunodiagnostic analysis methods. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6628Google Scholar
  39. 39.
    Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture assay designs. Methods Mol Biol 381:59–92. doi: 10.1007/978-1-59745-303-5_3
  40. 40.
    Jeyachandran YL, Mielczarski E, Rai B, Mielczarski JA (2009) Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir 25:11614–11620. doi: 10.1021/la901453a CrossRefGoogle Scholar
  41. 41.
    Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. Colloids Surf Physicochem Eng Asp 302:525–531. doi: 10.1016/j.colsurfa.2007.03.025 CrossRefGoogle Scholar
  42. 42.
    Thobhani S, Attree S, Boyd R, Kumarswami N, Noble J, Szymanski M, Porter RA (2010) Bioconjugation and characterisation of gold colloid-labelled proteins. J Immunol Methods 356:60–69. doi: 10.1016/j.jim.2010.02.007 CrossRefGoogle Scholar
  43. 43.
    Sampson WW (2009) Materials properties of paper as influenced by its fibrous architecture. Int Mater Rev 54:134–156. doi: 10.1179/174328009X411154 CrossRefGoogle Scholar
  44. 44.
    Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, Wright DW, Narayan RJ (2006) Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol J 1:976–987. doi: 10.1002/biot.200600123 CrossRefGoogle Scholar
  45. 45.
    Wu P, Castner DG, Grainger DW (2008) Diagnostic devices as biomaterials: a review of nucleic acid and protein microarray surface performance issues. J Biomater Sci Polym Ed 19:725–753. doi: 10.1163/156856208784522092 CrossRefGoogle Scholar
  46. 46.
    Phillips CO, Govindarajan S, Hamblyn SM, Conlan RS, Gethin DT, Claypole TC (2012) Patterning of antibodies using flexographic printing. Langmuir 28:9878–9884. doi: 10.1021/la300867m CrossRefGoogle Scholar
  47. 47.
    Kong F, Hu YF (2012) Biomolecule immobilization techniques for bioactive paper fabrication. Anal Bioanal Chem 403:7–13. doi: 10.1007/s00216-012-5821-1 CrossRefGoogle Scholar
  48. 48.
    Rosa AMM, Louro AF, Martins SAM, Inácio J, Azevedo AM, Prazeres DMF (2014) Capture and detection of DNA hybrids on paper via the anchoring of antibodies with fusions of carbohydrate binding modules and ZZ-domains. Anal Chem 86:4340–4347. doi: 10.1021/ac5001288 CrossRefGoogle Scholar
  49. 49.
    Barroso M, Gallardo E, Vieira DN, Queiroz JA, López-Rivadulla M (2011) Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal Bioanal Chem 400:1665–1690. doi: 10.1007/s00216-011-4888-4 CrossRefGoogle Scholar
  50. 50.
    Bush DM (2008) The U.S. Mandatory Guidelines for Federal Workplace Drug Testing Programs: current status and future considerations. Forensic Sci Int 174:111–119. doi: 10.1007/978-1-59745-303-5_3

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.VTT Technical Research Centre of FinlandEspooFinland
  2. 2.VTT Technical Research Centre of FinlandJyväskyläFinland
  3. 3.The Active Paper Company OyEspooFinland

Personalised recommendations