Abstract
We describe a fluorogenic two-site noncompetitive heterogeneous immunoassay with magnetic beads on a low-voltage digital microfluidic platform using closed electrowetting-on-dielectric (EWOD). All the steps of an enzyme-linked immunosorbent assay (ELISA) were performed on the device using 9H-(1, 3-dichloro-9, 9-dimethylacridin-2-one-7-yl) phosphate as the fluorogenic substrate for the enzyme alkaline phosphatase. The performance of the system was demonstrated with cardiac marker Troponin I (cTnI) as a model analyte in phosphate-buffered saline samples. cTnI was detected within the diagnostically relevant range with a limit of detection of 2.0 ng/mL (CV = 6.47 %). Washing of magnetic beads was achieved by movement through a narrow region of buffer bridging one drop to another with minimal fluid transfer. More than 90 % of the unbound reagents were removed after five washes. Further experiments testing human blood serum on the same platform demonstrated a sample-to-answer time at ∼18.5 min detecting 6.79 ng/mL cTnI.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- BSA:
-
Bovine serum albumin
- cTnI:
-
Cardiac muscle troponin I
- DMF:
-
Digital microfluidics
- EWOD:
-
Electrowetting-on-dielectric
- GAENE:
-
Glycolic acid ethoxylate 4-nonylphenyl ether
- IgE:
-
Immunoglobulin E
- IgG:
-
Immunoglobulin G
- LOD:
-
Limit of detection
References
Anderson NL, Anderson NG (2002) The human plasma proteome. Mol Cell Proteomics 1(11):845–867. doi:10.1074/mcp.R200007-MCP200
Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424(6944):35–41. doi:10.1038/nature01780
Ritchie RF, Ledue TB (2001) The immunoassay handbook. In: Wild D (ed) Clin Chem, 2nd edn. Washington, DC 47:1876–1885
Voller A, Bartlett A, Bidwell DE (1978) Enzyme immunoassays with special reference to ELISA techniques. J Clin Pathol 31(6):507–520. doi:10.1136/jcp.31.6.507
Stratis-Cullum DN, Griffin GD, Mobley J, Vass AA, Vo-Dinh T (2002) A miniature biochip system for detection of aerosolized Bacillus globigii spores. Anal Chem 75(2):275–280. doi:10.1021/ac026068+
Leira F, Vieites JM, Vieytes MR, Botana LM (2000) Characterization of 9H-(1,3-dichlor-9,9-dimethylacridin-2-ona-7-yl)-phosphate (DDAO) as substrate of PP-2A in a fluorimetric microplate assay for diarrhetic shellfish toxins (DSP). Toxicon 38(12):1833–1844. doi:10.1016/s0041-0101(00)00111-2
Zeng Y, Wang T (2013) Quantitative microfluidic biomolecular analysis for systems biology and medicine. Anal Bioanal Chem 405(17):5743–5758. doi:10.1007/s00216-013-6930-1
Lippmann G (1875) Relations entre les phénomènes électriques et capillaries. Ann Chim Phys 5:494–549
Froumkine A (1936) Couche double, électrocapillarité, surtension. Actualités scientifiques et industrielles 373(1):5–36
Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3(2):159–163. doi:10.1007/s101890070029
Pamula VK, Srinivasan V, Chakrapani H, Fair RB, Toone EJ (2005) A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives. In: Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on, 30 Jan–3 Feb 2005. pp 722–725. doi:10.1109/memsys.2005.1454031
Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12):2091–2104. doi:10.1039/B814922D
Shah GJ, Veale JL, Korin Y, Reed EF, Gritsch HA, Kim CJ (2010) Specific binding and magnetic concentration of CD8+T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4(4):44106. doi:10.1063/1.3509457
Shah GJ, Ding H, Sadeghi S, Chen S, Kim C-J, Dam RM (2013) On-demand droplet loading for automated organic chemistry on digital microfluidics. Lab Chip 13:2785–2795. doi:10.1039/C3LC41363B
Eydelnant IA, Uddayasankar U, Li BB, Liao MW, Wheeler AR (2012) Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab Chip 12(4):750–757. doi:10.1039/C2LC21004E
Hadwen B, Broder GR, Morganti D, Jacobs A, Brown C, Hector JR, Kubota Y, Morgan H (2012) Programmable large area digital microfluidic array with integrated droplet sensing for bioassays. Lab Chip 12(18):3305–3313. doi:10.1039/c2lc40273d
Delattre C, Allier CP, Fouillet Y, Jary D, Bottausci F, Bouvier D, Delapierre G, Quinaud M, Rival A, Davoust L, Peponnet C (2012) Macro to microfluidics system for biological environmental monitoring. Biosens Bioelectron 36(1):230–235. doi:10.1016/j.bios.2012.04.024
Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5(1):413–440. doi:10.1146/annurev-anchem-062011-143028
Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281. doi:10.1007/s10404-007-0161-8
Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12(14):2452–2463. doi:10.1039/c2lc40318h
Vergauwe N, Witters D, Ceyssens F, Vermeir S, Verbruggen B, Puers R, Lammertyn J (2011) A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays. J Micromech Microeng 21(5):054026. doi:10.1088/0960-1317/21/5/054026
Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8(12):2188–2196. doi:10.1039/B807855F
Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84(20):8805–8812. doi:10.1021/ac3020627
Vermeir S, Witters D, Vergauwe N, Knez K, Gijs M, Puers R, Lammertyn J (2012) Ferromagnetic particles for an improved heterogeneous bioassay performance on a digital lab-on-chip. In: 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Okinawa, Japan, October 28–November 1. pp 1042–1044
Miller E, Ng A, Uddayasankar U, Wheeler A (2011) A digital microfluidic approach to heterogeneous immunoassays. Anal Bioanal Chem 399(1):337–345. doi:10.1007/s00216-010-4368-2
Ash J, Baxevanakis G, Bilandzic L, Shin H, Kadijevic L (2000) Development of an automated quantitative latex immunoassay for cardiac troponin I in serum. Clin Chem 46(9):1521–1522
Rotman B, Zderic JA, Edelstein M (1963) Fluorogenic substrates for f3-D-galactosidases and phosphatases derived from fluorescein (3, 6-dihydroxyfluoran) and its monomethyl ether. Proc Natl Acad Sci U S A 50(1):1–6
Lewkowich IP, Campbell JD, HayGlass KT (2001) Comparison of chemiluminescent assays and colorimetric ELISAs for quantification of murine IL-12, human IL-4 and murine IL-4: chemiluminescent substrates provide markedly enhanced sensitivity. J Immunol Methods 247(1–2):111–118. doi:10.1016/S0022-1759(00)00306-9
Dodeigne C, Thunus L, Lejeune R (2000) Chemiluminescence as diagnostic tool. A review. Talanta 51(3):415–439. doi:10.1016/S0039-9140(99)00294-5
Mahajan VS, Jarolim P (2011) How to interpret elevated cardiac troponin levels. Circulation 124(21):2350–2354. doi:10.1161/circulationaha.111.023697
Jenkins WT, D’Ari L (1966) The kinetics of alkaline phosphatase. J Biol Chem 241(2):295–296
Berry SM, Maccoux LJ, Beebe DJ (2012) Streamlining immunoassays with immiscible filtrations assisted by surface tension. Anal Chem 84(13):5518–5523. doi:10.1021/ac300085m
Acknowledgments
This work would not have been possible without the assistance from Campbell Brown, Ben Hadwen and Jason Hector from Sharp Labs Europe. The authors would like to thank Prof. Peter Roach and Martyn Hiscox for use of their fluorescence plate reader. Mike Reeve kindly advised on DDAO-P and Cathy Rushworth assisted with the serum experiments. Funding from Sharp Labs Europe is gratefully acknowledged. This work was partly undertaken as an independent research by the National Institute for Health Research (Invention for Innovation (i4i), Rapid detection of infectious agents at point of triage (PoT), II-ES-0511-21002). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Tsaloglou, MN., Jacobs, A. & Morgan, H. A fluorogenic heterogeneous immunoassay for cardiac muscle troponin cTnI on a digital microfluidic device. Anal Bioanal Chem 406, 5967–5976 (2014). https://doi.org/10.1007/s00216-014-7997-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-014-7997-z


