Skip to main content
Log in

Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ambient desorption/ionization mass spectrometry (ADI-MS) aims to enable direct analysis of gaseous, liquid, and/or solid samples under ambient conditions. In ADI-MS, different types of desorption/ionization sources are classified according to their basic method of operation, namely spray-based, laser-based, or plasma-based. This review discusses many of the plasma-based techniques coupled to mass spectrometry in terms of their current performance in fast qualitative screening and quantitative analysis. Critical aspects, for example sample preparation and introduction, quantification, and matrix effects, are addressed. Furthermore, the applicability of plasma-based sources to portable mass spectrometers and their capabilities in imaging experiments are summarized. The applications discussed are of two types. In one, direct screening is performed without any or with minimal sample pretreatment. Samples with low matrix content are qualitatively analyzed without interferences. The other, more challenging applications, namely samples with high matrix content and most quantitative analysis, typically require sample preparation ranging from simple dilution to extensive multi-step procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473. doi:10.1126/science.1104404

    CAS  Google Scholar 

  2. Cody RB, Laramee JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77(8):2297–2302

    CAS  Google Scholar 

  3. Monge ME, Harris GA, Dwivedi P, Fernandez FM (2013) Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev 113(4):2269–2308. doi:10.1021/cr300309q

    CAS  Google Scholar 

  4. Harper DJ, Charipar AN, Mulligan CC, Zhang X, Cooks RG, Ouyang Z (2008) Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal Chem 80(23):9097–9104. doi:10.1021/ac801641a

    CAS  Google Scholar 

  5. Na N, Zhao M, Zhang S, Yang C, Zhang X (2007) Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 18(10):1859–1862. doi:10.1016/j.jasms.2007.07.027

    CAS  Google Scholar 

  6. McEwen CN, McKay RG, Larsen BS (2005) Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem 77(23):7826–7831. doi:10.1021/ac051470k

    CAS  Google Scholar 

  7. Yang Z, Attygalle AB (2011) Aliphatic Hydrocarbon Spectra by Helium Ionization Mass Spectrometry (HIMS) on a Modified Atmospheric-Pressure Source Designed for Electrospray Ionization. J Am Soc Mass Spectrom 22(8):1395–1402. doi:10.1007/s13361-011-0149-1

    CAS  Google Scholar 

  8. Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal Chem 80(8):2646–2653. doi:10.1021/ac800156y

    CAS  Google Scholar 

  9. Ratcliffe LV, Rutten FJM, Barrett DA, Whitmore T, Seymour D, Greenwood C, Aranda-Gonzalvo Y, Robinson S, McCoustra M (2007) Surface analysis under ambient conditions using plasma-assisted desorption/ionization mass spectrometry. Anal Chem 79(16):6094–6101. doi:10.1021/ac070109q

    CAS  Google Scholar 

  10. Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133(10):1297–1301. doi:10.1039/b806810k

    CAS  Google Scholar 

  11. Shelley JT, Wiley JS, Chan GCY, Schilling GD, Ray SJ, Hieftje GM (2009) Characterization of Direct-Current Atmospheric-Pressure Discharges Useful for Ambient Desorption/Ionization Mass Spectrometry. J Am Soc Mass Spectrom 20(5):837–844. doi:10.1016/j.jasms.2008.12.020

    CAS  Google Scholar 

  12. Fernandez FM, Cody RB, Green MD, Hampton CY, McGready R, Sengaloundeth S, White NJ, Newton PN (2006) Characterization of solid counterfeit drug samples by desorption electrospray ionization and direct-analysis-in-real-time coupled to time-of-flight mass spectrometry. ChemMedChem 1(7):702–705. doi:10.1002/cmdc.200600041

    CAS  Google Scholar 

  13. Kratzer J, Mester Z, Sturgeon RE (2011) Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen. Spectrochim Acta B 66(8):594–603. doi:10.1016/j.sab.2011.06.005

    CAS  Google Scholar 

  14. Cody RB, Dane AJ (2013) Soft Ionization of Saturated Hydrocarbons, Alcohols and Nonpolar Compounds by Negative-Ion Direct Analysis in Real-Time Mass Spectrometry. J Am Soc Mass Spectrom 24(3):329–334. doi:10.1007/s13361-012-0569-6

    CAS  Google Scholar 

  15. Harris GA, Fernandez FM (2009) Simulations and Experimental Investigation of Atmospheric Transport in an Ambient Metastable-Induced Chemical Ionization Source. Anal Chem 81(1):322–329. doi:10.1021/ac802117u

    CAS  Google Scholar 

  16. Chernetsova ES, Revelsky AI, Morlock GE (2011) Some new features of Direct Analysis in Real Time mass spectrometry utilizing the desorption at an angle option. Rapid Commun Mass Spectrom 25(16):2275–2282. doi:10.1002/rcm.5112

    Google Scholar 

  17. Krechmer J, Tice J, Crawford E, Musselman B (2011) Increasing the rate of sample vaporization in an open air desorption ionization source by using a heated metal screen as a sample holder. Rapid Commun Mass Spectrom 25(17):2384–2388. doi:10.1002/rcm.5133

    CAS  Google Scholar 

  18. Shelley JT, Wiley JS, Hieftje GM (2011) Ultrasensitive Ambient Mass Spectrometric Analysis with a Pin-to-Capillary Flowing Atmospheric-Pressure Afterglow Source. Anal Chem 83(14):5741–5748. doi:10.1021/ac201053q

    CAS  Google Scholar 

  19. Andrade FJ, Shelley JT, Wetzel WC, Webb MR, Gamez G, Ray SJ, Hieftje GM (2008) Atmospheric pressure chemical ionization source. 2. Desorption-ionization for the direct analysis of solid compounds. Anal Chem 80(8):2654–2663. doi:10.1021/ac:800210s

    CAS  Google Scholar 

  20. Pfeuffer KP, Schaper JN, Shelley JT, Ray SJ, Chan GCY, Bings NH, Hieftje GM (2013) Halo-Shaped Flowing Atmospheric Pressure Afterglow: A Heavenly Design for Simplified Sample Introduction and Improved Ionization in Ambient Mass Spectrometry. Anal Chem 85(15):7512–7518. doi:10.1021/ac401524x

    CAS  Google Scholar 

  21. Huang GM, Zheng OY, Cooks RG (2009) High-throughput trace melamine analysis in complex mixtures. Chem Commun 5:556–558. doi:10.1039/b818059h

    Google Scholar 

  22. Zhang JI, Tao WA, Cooks RG (2011) Facile Determination of Double Bond Position in Unsaturated Fatty Acids and Esters by Low Temperature Plasma Ionization Mass Spectrometry. Anal Chem 83(12):4738–4744. doi:10.1021/ac1030946

    CAS  Google Scholar 

  23. Norgaard AW, Vibenholt A, Benassi M, Clausen PA, Wolkoff P (2013) Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry. J Am Soc Mass Spectrom 24(7):1090–1096. doi:10.1007/s13361-013-0648-3

    CAS  Google Scholar 

  24. Wiley JS, Shelley JT, Cooks RG (2013) Handheld Low-Temperature Plasma Probe for Portable "Point-and-Shoot" Ambient Ionization Mass Spectrometry. Anal Chem 85(14):6545–6552. doi:10.1021/ac4013286

    CAS  Google Scholar 

  25. Huang GM, Xu W, Visbal-Onufrak MA, Ouyang Z, Cooks RG (2010) Direct analysis of melamine in complex matrices using a handheld mass spectrometer. Analyst 135(4):705–711. doi:10.1039/b923427f

    CAS  Google Scholar 

  26. Dalgleish JK, Wleklinski M, Shelley JT, Mulligan CC, Ouyang Z, Cooks RG (2013) Arrays of low-temperature plasma probes for ambient ionization mass spectrometry. Rapid Commun Mass Spectrom 27(1):135–142. doi:10.1002/rcm.6435

    CAS  Google Scholar 

  27. Hayen H, Michels A, Franzke J (2009) Dielectric Barrier Discharge Ionization for Liquid Chromatography/Mass Spectrometry. Anal Chem 81(24):10239–10245. doi:10.1021/ac902176k

    CAS  Google Scholar 

  28. Hiraoka K, Ninomiya S, Chen LC, Iwama T, Mandal MK, Suzuki H, Ariyada O, Furuya H, Takekawa K (2011) Development of double cylindrical dielectric barrier discharge ion source. Analyst 136(6):1210–1215. doi:10.1039/c0an00621a

    CAS  Google Scholar 

  29. Nudnova MM, Zhu L, Zenobi R (2012) Active capillary plasma source for ambient mass spectrometry. Rapid Commun Mass Spectrom 26(12):1447–1452. doi:10.1002/rcm.6242

    CAS  Google Scholar 

  30. Almasian MR, Yang CD, Xing Z, Zhang SC, Zhang XR (2010) Development of a graphite low-temperature plasma source with dual-mode in-source fragmentation for ambient mass spectrometry. Rapid Commun Mass Spectrom 24(6):742–748. doi:10.1002/rcm.4444

    CAS  Google Scholar 

  31. Bowfield A, Barrett DA, Alexander MR, Ortori CA, Rutten FM, Salter TL, Gilmore IS, Bradley JW (2012) Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air. Rev Sci Instrum 83(6):063503. doi:10.1063/1.4729120

    CAS  Google Scholar 

  32. Shen Y, van Beek TA, Claassen FW, Zuilhof H, Chen B, Nielen MWF (2012) Rapid control of Chinese star anise fruits and teas for neurotoxic anisatin by Direct Analysis in Real Time high resolution mass spectrometry. J Chromatogr A 1259:179–186. doi:10.1016/j.chroma.2012.03.058

    CAS  Google Scholar 

  33. Wang L, Zhao PY, Zhang FZ, Li YJ, Pan CP (2012) Direct analysis in real time mass spectrometry for the rapid identification of four highly hazardous pesticides in agrochemicals. Rapid Commun Mass Spectrom 26(16):1859–1867. doi:10.1002/rcm.6274

    CAS  Google Scholar 

  34. Cajka T, Danhelova H, Zachariasova M, Riddellova K, Hajslova J (2013) Application of direct analysis in real time ionization-mass spectrometry (DART-MS) in chicken meat metabolomics aiming at the retrospective control of feed fraud. Metabolomics 9(3):545–557. doi:10.1007/s11306-013-0495-z

    CAS  Google Scholar 

  35. Vaclavik L, Hrbek V, Cajka T, Rohlik BA, Pipek P, Hajslova J (2011) Authentication of Animal Fats Using Direct Analysis in Real Time (DART) Ionization-Mass Spectrometry and Chemometric Tools. J Agric Food Chem 59(11):5919–5926. doi:10.1021/jf200734x

    CAS  Google Scholar 

  36. Salter TL, Green FM, Faruqui N, Gilmore IS (2011) Analysis of personal care products on model skin surfaces using DESI and PADI ambient mass spectrometry. Analyst 136(16):3274–3280. doi:10.1039/c1an15138j

    CAS  Google Scholar 

  37. Salter TL, Gilmore IS, Bowfield A, Olabanji OT, Bradley JW (2013) Ambient Surface Mass Spectrometry Using Plasma-Assisted Desorption Ionization: Effects and Optimization of Analytical Parameters for Signal Intensities of Molecules and Polymers. Anal Chem 85(3):1675–1682. doi:10.1021/ac302677m

    CAS  Google Scholar 

  38. Chernetsova ES, Morlock GE (2012) Assessing the capabilities of direct analysis in real time mass spectrometry for 5-hydroxymethylfurfural quantitation in honey. Int J Mass Spectrom 314:22–32. doi:10.1016/j.ijms.2012.01.012

    CAS  Google Scholar 

  39. Albert A, Engelhard C (2012) Characteristics of Low-Temperature Plasma Ionization for Ambient Mass Spectrometry Compared to Electrospray Ionization and Atmospheric Pressure Chemical Ionization. Anal Chem 84(24):10657–10664. doi:10.1021/ac302287x

    CAS  Google Scholar 

  40. Gilbert-Lopez B, Garcia-Reyes JF, Meyer C, Michels A, Franzke J, Molina-Diaz A, Hayen H (2012) Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization-mass spectrometry. Analyst 137(22):5403–5410. doi:10.1039/c2an35705d

    CAS  Google Scholar 

  41. Garcia-Reyes JF, Harper JD, Salazar GA, Charipar NA, Ouyang Z, Cooks RG (2011) Detection of Explosives and Related Compounds by Low-Temperature Plasma Ambient Ionization Mass Spectrometry. Anal Chem 83(3):1084–1092. doi:10.1021/ac1029117

    CAS  Google Scholar 

  42. Zhang Y, Ma XX, Zhang SC, Yang CD, Ouyang Z, Zhang XR (2009) Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. Analyst 134(1):176–181. doi:10.1039/b816230a

    CAS  Google Scholar 

  43. Jecklin MC, Gamez G, Zenobi R (2009) Fast polymer fingerprinting using flowing afterglow atmospheric pressure glow discharge mass spectrometry. Analyst 134(8):1629–1636. doi:10.1039/b819560a

    CAS  Google Scholar 

  44. Gong X, Xiong X, Ye P, Yang C, Zhang S, Fang X, Zhang X (2011) Low-temperature plasma ionization source for the online detection of indoor volatile organic compounds. Talanta 85(5):2458–2462. doi:10.1016/j.talanta.2011.07.097

    CAS  Google Scholar 

  45. Na N, Xia Y, Zhu Z, Zhang X, Cooks RG (2009) Birch Reduction of Benzene in a Low-Temperature Plasma. Angew Chem Int Ed 48(11):2017–2019. doi:10.1002/anie.200805256

    CAS  Google Scholar 

  46. Shelley JT, Hieftje GM (2010) Ionization matrix effects in plasma-based ambient mass spectrometry sources. J Anal At Spectrom 25(3):345–350. doi:10.1039/b923564g

    CAS  Google Scholar 

  47. Novotna H, Kmiecik O, Galazka M, Krtkova V, Hurajova A, Schulzova V, Hallmann E, Rembialkowska E, Hajslova J (2012) Metabolomic fingerprinting employing DART-TOFMS for authentication of tomatoes and peppers from organic and conventional farming. Food Addit Contam Part A Chem 29(9):1335–1346. doi:10.1080/19440049.2012.690348

    CAS  Google Scholar 

  48. Zhu HB, Wang CY, Qi Y, Song FR, Liu ZG, Liu SY (2012) Rapid quality assessment of Radix Aconiti Preparata using direct analysis in real time mass spectrometry. Anal Chim Acta 752:69–77. doi:10.1016/j.aca.2012.09.018

    CAS  Google Scholar 

  49. Mess A, Vietzke JP, Rapp C, Francke W (2011) Qualitative Analysis of Tackifier Resins in Pressure Sensitive Adhesives Using Direct Analysis in Real Time Time-of-Flight Mass Spectrometry. Anal Chem 83(19):7323–7330. doi:10.1021/ac2011608

    CAS  Google Scholar 

  50. Farre M, Pico Y, Barcelo D (2013) Direct Peel Monitoring of Xenobiotics in Fruit by Direct Analysis in Real Time Coupled to a Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Anal Chem 85(5):2638–2644. doi:10.1021/ac3026702

    CAS  Google Scholar 

  51. Saang'onyo DS, Smith DL (2012) Optimization of direct analysis in real time (DART) linear ion trap parameters for the detection and quantitation of glucose. Rapid Commun Mass Spectrom 26(3):385–391. doi:10.1002/rcm.5316

    Google Scholar 

  52. Mess A, Enthaler B, Fischer M, Rapp C, Pruns JK, Vietzke JP (2013) A novel sampling method for identification of endogenous skin surface compounds by use of DART-MS and MALDI-MS. Talanta 103:398–402. doi:10.1016/j.talanta.2012.10.073

    CAS  Google Scholar 

  53. Song L, Gibson SC, Bhandari D, Cook KD, Bartmess JE (2009) Ionization Mechanism of Positive-Ion Direct Analysis in Real Time: A Transient Microenvironment Concept. Anal Chem 81(24):10080–10088. doi:10.1021/ac901122b

    CAS  Google Scholar 

  54. Cho DS, Gibson SC, Bhandari D, McNally ME, Hoffman RM, Cook KD, Song LG (2011) Evaluation of direct analysis in real time mass spectrometry for onsite monitoring of batch slurry reactions. Rapid Commun Mass Spectrom 25(23):3575–3580. doi:10.1002/rcm.5269

    CAS  Google Scholar 

  55. Zeng S, Chen T, Wang L, Qu H (2013) Monitoring batch-to-batch reproducibility using direct analysis in real time mass spectrometry and multivariate analysis: A case study on precipitation. J Pharm Biomed Anal 76:87–95. doi:10.1016/j.jpba.2012.12.014

    CAS  Google Scholar 

  56. Chernetsova ES, Crawford EA, Shikov AN, Pozharitskaya ON, Makarov VG, Morlock GE (2012) ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves of Bergenia crassifolia L. Rapid Commun Mass Spectrom 26(11):1329–1337. doi:10.1002/rcm.6226

    CAS  Google Scholar 

  57. Huang MZ, Cheng SC, Cho YT, Shiea J (2011) Ambient ionization mass spectrometry: A tutorial. Anal Chim Acta 702(1):1–15. doi:10.1016/j.aca.2011.06.017

    CAS  Google Scholar 

  58. Weston DJ (2010) Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst 135(4):661–668

    CAS  Google Scholar 

  59. Self RL, Wu WH (2012) Rapid qualitative analysis of phthalates added to food and nutraceutical products by direct analysis in real time/orbitrap mass spectrometry. Food Control 25(1):13–16. doi:10.1016/j.foodcont.2011.10.013

    CAS  Google Scholar 

  60. Li YJ, Wang ZZ, Bi YA, Ding G, Sheng LS, Qin JP, Xiao W, Li JC, Wang YX, Wang X (2012) The evaluation and implementation of direct analysis in real time quadrupole time-of-flight tandem mass spectrometry for characterization and quantification of geniposide in Re Du Ning Injections. Rapid Commun Mass Spectrom 26(11):1377–1384. doi:10.1002/rcm.6235

    CAS  Google Scholar 

  61. Danhelova H, Hradecky J, Prinosilova S, Cajka T, Riddellova K, Vaclavik L, Hajslova J (2012) Rapid analysis of caffeine in various coffee samples employing direct analysis in real-time ionization-high-resolution mass spectrometry. Anal Bioanal Chem 403(10):2883–2889. doi:10.1007/s00216-012-5820-2

    CAS  Google Scholar 

  62. Haunschmidt M, Buchberger W, Klampfl CW, Hertsens R (2011) Identification and semi-quantitative analysis of parabens and UV filters in cosmetic products by direct-analysis-in-real-time mass spectrometry and gas chromatography with mass spectrometric detection. Anal Methods 3(1):99–104. doi:10.1039/c0ay00588f

    CAS  Google Scholar 

  63. Vaclavik L, Mishra A, Mishra KB, Hajslova J (2013) Mass spectrometry-based metabolomic fingerprinting for screening cold tolerance in Arabidopsis thaliana accessions. Anal Bioanal Chem 405(8):2671–2683. doi:10.1007/s00216-012-6692-1

    CAS  Google Scholar 

  64. Lojza J, Cajka T, Schulzova V, Riddellova K, Hajslova J (2012) Analysis of isoflavones in soybeans employing direct analysis in real-time ionization-high-resolution mass spectrometry. J Sep Sci 35(3):476–481. doi:10.1002/jssc.201100882

    CAS  Google Scholar 

  65. Chernetsova ES, Bromirski M, Scheibner O, Morlock GE (2012) DART-Orbitrap MS: a novel mass spectrometric approach for the identification of phenolic compounds in propolis. Anal Bioanal Chem 403(10):2859–2867. doi:10.1007/s00216-012-5800-6

    CAS  Google Scholar 

  66. Zhang JI, Costa AB, Tao WA, Cooks RG (2011) Direct detection of fatty acid ethyl esters using low temperature plasma (LTP) ambient ionization mass spectrometry for rapid bacterial differentiation. Analyst 136(15):3091–3097. doi:10.1039/c0an00940g

    CAS  Google Scholar 

  67. Houlgrave S, LaPorte GM, Stephens JC, Wilson JL (2013) The Classification of Inkjet Inks Using AccuTOF DART (Direct Analysis in Real Time) Mass SpectrometryA Preliminary Study. J Forensic Sci 58(3):813–821. doi:10.1111/1556-4029.12048

    CAS  Google Scholar 

  68. Bai Y, Zhang JL, Liu HW (2012) Direct analysis in real time mass spectrometry combined with single-drop liquid-liquid-liquid microextraction for the rapid analysis of multiple phytohormones in fruit juice. Anal Bioanal Chem 403(8):2307–2314. doi:10.1007/s00216-012-5728-x

    CAS  Google Scholar 

  69. Zhou ZG, Zhang JL, Zhang W, Bai Y, Liu HW (2011) Rapid screening for synthetic antidiabetic drug adulteration in herbal dietary supplements using direct analysis in real time mass spectrometry. Analyst 136(12):2613–2618. doi:10.1039/c0an01047b

    CAS  Google Scholar 

  70. Dove ADM, Leisen J, Zhou MS, Byrne JJ, Lim-Hing K, Webb HD, Gelbaum L, Viant MR, Kubanek J, Fernandez FM (2012) Biomarkers of Whale Shark Health: A Metabolomic Approach. PLoS One 7(11):1–10. doi:10.1371/journal.pone.0049379

    Google Scholar 

  71. Fraser D, Deroo CS, Cody RB, Armitage RA (2013) Characterization of blood in an encrustation on an African mask: spectroscopic and direct analysis in real time mass spectrometric identification of haem. Analyst 138(16):4470–4474. doi:10.1039/c3an00633f

    CAS  Google Scholar 

  72. Mirnaghi FS, Pawliszyn J (2012) Reusable Solid-Phase Microextraction Coating for Direct Immersion Whole-Blood Analysis and Extracted Blood Spot Sampling Coupled with Liquid Chromatography-Tandem Mass Spectrometry and Direct Analysis in Real-Time Tandem Mass Spectrometry. Anal Chem 84(19):8301–8309. doi:10.1021/ac3018229

    CAS  Google Scholar 

  73. Martinez-Villalba A, Vaclavik L, Moyano E, Galceran MT, Hajslova J (2013) Direct analysis in real time high-resolution mass spectrometry for high-throughput analysis of antiparasitic veterinary drugs in feed and food. Rapid Commun Mass Spectrom 27(3):467–475. doi:10.1002/rcm.6466

    CAS  Google Scholar 

  74. Wang CY, Zhu HB, Cai ZW, Song FR, Liu ZQ, Liu SY (2013) Newborn screening of phenylketonuria using direct analysis in real time (DART) mass spectrometry. Anal Bioanal Chem 405(10):3159–3164. doi:10.1007/s00216-013-6713-8

    CAS  Google Scholar 

  75. Cajka T, Riddellova K, Zomer P, Mol H, Hajslova J (2011) Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometry. Food Addit Contam Part A Chem 28(10):1372–1382. doi:10.1080/19440049.2011.590456

    CAS  Google Scholar 

  76. Rajchl A, Drgova L, Gregrova A, Cizkova H, Sevcik R, Voldrich M (2013) Rapid determination of 5-hydroxymethylfurfural by DART ionization with time-of-flight mass spectrometry. Anal Bioanal Chem 405(14):4737–4745. doi:10.1007/s00216-013-6875-4

    CAS  Google Scholar 

  77. Vaclavik L, Belkova B, Reblova Z, Riddellova K, Hajslova J (2013) Rapid monitoring of heat-accelerated reactions in vegetable oils using direct analysis in real time ionization coupled with high resolution mass spectrometry. Food Chem 138(4):2312–2320. doi:10.1016/j.foodchem.2012.12.019

    CAS  Google Scholar 

  78. Wiley JS, Garcia-Reyes JF, Harper JD, Charipar NA, Ouyang Z, Cooks RG (2010) Screening of agrochemicals in foodstuffs using low-temperature plasma (LTP) ambient ionization mass spectrometry. Analyst 135(5):971–979. doi:10.1039/b919493b

    CAS  Google Scholar 

  79. Jackson AU, Garcia-Reyes JF, Harper JD, Wiley JS, Molina-Diaz A, Ouyang Z, Cooks RG (2010) Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry. Analyst 135(5):927–933. doi:10.1039/b920155f

    CAS  Google Scholar 

  80. Schaper JN, Pfeuffer KP, Shelley JT, Bings NH, Hieftje GM (2012) Drop-on-Demand Sample Introduction System Coupled with the Flowing Atmospheric-Pressure Afterglow for Direct Molecular Analysis of Complex Liquid Microvolume Samples. Anal Chem 84(21):9246–9252. doi:10.1021/ac3020164

    CAS  Google Scholar 

  81. Shelley JT, Ray SJ, Hieftje GM (2008) Laser Ablation Coupled to a Flowing Atmospheric Pressure Afterglow for Ambient Mass Spectral Imaging. Anal Chem 80(21):8308–8313. doi:10.1021/ac801594u

    CAS  Google Scholar 

  82. Gilbert-Lopez B, Schilling M, Ahlmann N, Michels A, Hayen H, Molina-Diaz A, Garcia-Reyes JF, Franzke J (2013) Ambient Diode Laser Desorption Dielectric Barrier Discharge Ionization Mass Spectrometry of Nonvolatile Chemicals. Anal Chem 85(6):3174–3182. doi:10.1021/ac303452w

    CAS  Google Scholar 

  83. Howlett SE, Steiner RR (2011) Validation of Thin Layer Chromatography with AccuTOF-DART (TM) Detection for Forensic Drug Analysis. J Forensic Sci 56(5):1261–1267. doi:10.1111/j.1556-4029.2011.01881.x

    CAS  Google Scholar 

  84. Zhang JL, Zhou ZG, Yang JW, Zhang W, Bai Y, Liu HW (2012) Thin Layer Chromatography/Plasma Assisted Multiwavelength Laser Desorption Ionization Mass Spectrometry for Facile Separation and Selective Identification of Low Molecular Weight Compounds. Anal Chem 84(3):1496–1503. doi:10.1021/ac202732y

    CAS  Google Scholar 

  85. Block E, Dane AJ, Cody RB (2011) Crushing Garlic and Slicing Onions: Detection of Sulfenic Acids and Other Reactive Organosulfur Intermediates from Garlic and Other Alliums using Direct Analysis in Real-Time Mass Spectrometry (DART-MS). Phosphorus Sulfur Silicon Relat Elem 186(5):1085–1093. doi:10.1080/10426507.2010.507728

    CAS  Google Scholar 

  86. Ma X, Zhang S, Lin Z, Liu Y, Xing Z, Yang C, Zhang X (2009) Real-time monitoring of chemical reactions by mass spectrometry utilizing a low-temperature plasma probe. Analyst 134(9):1863–1867. doi:10.1039/b907439b

    CAS  Google Scholar 

  87. Vortmann B, Nowak S, Engelhard C (2013) Rapid Characterization of Lithium Ion Battery Electrolytes and Thermal Aging Products by Low-Temperature Plasma Ambient Ionization High-Resolution Mass Spectrometry. Anal Chem 85(6):3433–3438. doi:10.1021/ac4001404

    CAS  Google Scholar 

  88. Bajpai V, Pandey R, Negi MPS, Bindu KH, Kumar N, Kumar B (2012) Characteristic differences in metabolite profile in male and female plants of dioecious Piper betle L. J Biosci 37(6):1061–1066. doi:10.1007/s12038-012-9269-4

    CAS  Google Scholar 

  89. Kim SW, Kim HJ, Kim JH, Kwon YK, Ahn MS, Jang YP, Liu JR (2011) A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry. Plant Methods 7(14):1–10. doi:10.1186/1746-4811-7-14

    CAS  Google Scholar 

  90. Bajpai V, Pandey R, Negi MPS, Kumar N, Kumar B (2012) DART MS Based Chemical Profiling for Therapeutic Potential of Piper betle Landraces. Nat Prod Commun 7(12):1627–1629

    CAS  Google Scholar 

  91. Zeng S, Wang L, Chen T, Wang Y, Mo H, Qu H (2012) Direct analysis in real time mass spectrometry and multivariate data analysis: A novel approach to rapid identification of analytical markers for quality control of traditional Chinese medicine preparation. Anal Chim Acta 733:38–47. doi:10.1016/j.aca.2012.04.025

    CAS  Google Scholar 

  92. Lee SM, Kim HJ, Jang YP (2012) Chemometric Classification of Morphologically Similar Umbelliferae Medicinal Herbs by DART-TOF-MS Fingerprint. Phytochem Anal 23(5):508–512. doi:10.1002/pca.2348

    CAS  Google Scholar 

  93. Dunham SJB, Hooker PD, Hyde RM (2012) Identification, extraction and quantification of the synthetic cannabinoid JWH-018 from commercially available herbal marijuana alternatives. Forensic Sci Int 223(1–3):241–244. doi:10.1016/j.forsciint.2012.09.010

    CAS  Google Scholar 

  94. Samms WC, Jiang YJ, Dixon MD, Houck SS, Mozayani A (2011) Analysis of Alprazolam by DART-TOF Mass Spectrometry in Counterfeit and Routine Drug Identification Cases. J Forensic Sci 56(4):993–998. doi:10.1111/j.1556-4029.2011.01767.x

    CAS  Google Scholar 

  95. Musah RA, Domin MA, Cody RB, Lesiak AD, Dane AJ, Shepard JRE (2012) Direct analysis in real time mass spectrometry with collision-induced dissociation for structural analysis of synthetic cannabinoids. Rapid Commun Mass Spectrom 26(19):2335–2342. doi:10.1002/rcm.6354

    CAS  Google Scholar 

  96. Liu Y, Lin Z, Zhang S, Yang C, Zhang X (2009) Rapid screening of active ingredients in drugs by mass spectrometry with low-temperature plasma probe. Anal Bioanal Chem 395(3):591–599. doi:10.1007/s00216-009-2947-x

    CAS  Google Scholar 

  97. Petucci C, Diffendal J (2008) Atmospheric solids analysis probe: a rapid ionization technique for small molecule drugs. J Mass Spectrom 43(11):1565–1568. doi:10.1002/jms.1424

    CAS  Google Scholar 

  98. Twohig M, Skilton SJ, Fujimoto G, Ellor N, Plumb RS (2010) Rapid detection and identification of counterfeit of adulterated products of synthetic phosphodiesterase type-5 inhibitors with an atmospheric solids analysis probe. Drug Test Anal 2(1–2):45–50. doi:10.1002/dta.115

    CAS  Google Scholar 

  99. Smoluch M, Reszke E, Ramsza A, Labuz K, Silberring J (2012) Direct analysis of methcathinone from crude reaction mixture by flowing atmospheric-pressure afterglow mass spectrometry. Rapid Commun Mass Spectrom 26(13):1577–1580. doi:10.1002/rcm.6262

    CAS  Google Scholar 

  100. Lesiak AD, Musah RA, Cody RB, Domin MA, Dane AJ, Shepard JRE (2013) Direct analysis in real time mass spectrometry (DART-MS) of "bath salt" cathinone drug mixtures. Analyst 138(12):3424–3432. doi:10.1039/c3an00360d

    CAS  Google Scholar 

  101. DART Forensics Library, http://chemdata.nist.gov/dokuwiki/doku.php?id=chemdata:dart-library, accessed April 10, 2014

  102. Lee PJ, Ruel AM, Balogh MP, Young PB, Burgess JA (2010) Analysis of vanilla flavoured food products using atmospheric-pressure solids analysis probe. Agro Food Ind Hi-Tech 21(3):25–28

    CAS  Google Scholar 

  103. Crawford E, Musselman B (2012) Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer. Anal Bioanal Chem 403(10):2807–2812. doi:10.1007/s00216-012-5853-6

    CAS  Google Scholar 

  104. Garcia-Reyes JF, Mazzotti F, Harper JD, Charipar NA, Oradu S, Ouyang Z, Sindona G, Cooks RG (2009) Direct olive oil analysis by low-temperature plasma (LTP) ambient ionization mass spectrometry (vol 23, pg 3057, 2009). Rapid Commun Mass Spectrom 23(21):3492–3492. doi:10.1002/rcm.4292

    CAS  Google Scholar 

  105. Jones RW, McClelland JF (2013) Analysis of writing inks on paper using direct analysis in real time mass spectrometry. Forensic Sci Int 231(1–3):73–81. doi:10.1016/j.forsciint.2013.04.016

    CAS  Google Scholar 

  106. Adams J (2011) Analysis of printing and writing papers by using direct analysis in real time mass spectrometry. Int J Mass Spectrom 301(1–3):109–126. doi:10.1016/j.ijms.2010.07.025

    CAS  Google Scholar 

  107. Singh V, Gupta AK, Singh SP, Kumar A (2012) Direct Analysis in Real Time by Mass Spectrometric Technique for Determining the Variation in Metabolite Profiles of Cinnamomum tamala Nees and Eberm Genotypes. Sci World J 2012:1–6. doi:10.1100/2012/549265

    Google Scholar 

  108. Watts KR, Loveridge ST, Tenney K, Media J, Valeriote FA, Crews P (2011) Utilizing DART Mass Spectrometry to Pinpoint Halogenated Metabolites from a Marine Invertebrate-Derived Fungus. J Org Chem 76(15):6201–6208. doi:10.1021/jo2009593

    CAS  Google Scholar 

  109. Pfaff AM, Steiner RR (2011) Development and validation of AccuTOF-DART (TM) as a screening method for analysis of bank security device and pepper spray components. Forensic Sci Int 206(1–3):62–70. doi:10.1016/j.forsciint.2010.06.018

    CAS  Google Scholar 

  110. Hendricks PI, Dalgleish JK, Shelley JT, Kirleis MA, McNicholas MT, Li L, Chen TC, Chen CH, Duncan JS, Boudreau F, Noll RJ, Denton JP, Roach TA, Ouyang Z, Cooks RG (2014) Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Anal Chem 86(6):2900–2908. doi:10.1021/ac403765x

    CAS  Google Scholar 

  111. Campbell DI, Dalgleish JK, Cotte-Rodriguez I, Maeno S, Cooks RG (2013) Chemical analysis and chemical imaging of fragrances and volatile compounds by low-temperature plasma ionization mass spectrometry. Rapid Commun Mass Spectrom 27(16):1828–1836. doi:10.1002/rcm.6632

    CAS  Google Scholar 

  112. Liu YY, Ma XX, Lin ZQ, He MJ, Han GJ, Yang CD, Xing Z, Zhang SC, Zhang XR (2010) Imaging Mass Spectrometry with a Low-Temperature Plasma Probe for the Analysis of Works of Art. Angew Chem-Int Ed 49(26):4435–4437. doi:10.1002/anie.200906975

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (DFG) for financial support (grant EN-927/1-1) and the Alexander von Humboldt foundation for sponsoring the research stay of Dr. Shelley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Engelhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, A., Shelley, J.T. & Engelhard, C. Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis. Anal Bioanal Chem 406, 6111–6127 (2014). https://doi.org/10.1007/s00216-014-7989-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7989-z

Keywords

Navigation