Analytical and Bioanalytical Chemistry

, Volume 406, Issue 22, pp 5347–5358 | Cite as

Ionic liquids as stationary phases in gas chromatography—an LSER investigation of six commercial phases and some applications

  • Waldemar Weber
  • Jan T. AnderssonEmail author
Research Paper


The separation properties of six novel stationary phases for gas chromatography, commercially available from Sigma-Aldrich (Supelco) and based on ionic liquids (ILs), were investigated. The linear solvation energy relationship model (LSER) was used to describe the molecular interactions between these stationary phases and 30 solutes. The solutes belong to different groups of compounds, like haloalkanes, alcohols, ketones, aromatics, aliphatics, and others. A good description of different interactions, as described by the LSER model, could be achieved. The calculated values of system constants for the ionic liquid phases were compared with constants of commonly used standard phases like a 5 % phenyl/95 % dimethyl siloxane and a polyethylene glycol phase. The solute descriptors are in good agreement with those found by previous authors who have used the LSER model for 44 different ionic liquids as stationary phase. The experiments were carried out at two temperatures to evaluate the influence on the phase parameters and separation characteristics. The interactions of different functional groups with the IL phases are discussed. These novel IL phases are a promising replacement of or an addition to common polar phases. Based on the evaluated phase properties, several possibilities for applications of these novel phases are shown.


Ionic liquid stationary phases Gas chromatography LFER (Abrahams) model 



Supelco is thanked for donating the GC columns used in this work.

Supplementary material

216_2014_7972_MOESM1_ESM.pdf (188 kb)
ESM 1 (PDF 187 kb)


  1. 1.
    Walden P (1914) Bull. Acad. Sci. 405–422Google Scholar
  2. 2.
    Kokorin A (2011) Ionic liquids: theory, properties. New Approaches Mat Sc Fluids In Tech. doi: 10.5772/603 Google Scholar
  3. 3.
    Pandey S (2006) Anal Chim Acta 556:38–45CrossRefGoogle Scholar
  4. 4.
    Greaves TL, Drummond CJ (2008) Chem Rev 108:206–237CrossRefGoogle Scholar
  5. 5.
    Hanneman WW, Spencer CF, Johnson JF (1960) Anal Chem 32:1386–1388CrossRefGoogle Scholar
  6. 6.
    Barber DW, Phillips CSG, Tusa GF, Verdin A (1959) J Chem Soc 18–24Google Scholar
  7. 7.
    Gordon JE, Selwyn JE, Thorne RL (1966) WHO 31:1925–1930Google Scholar
  8. 8.
    Pacholec F, Butler HT, Poole CF (1982) Anal Chem 54:1938–1941CrossRefGoogle Scholar
  9. 9.
    Pacholec F, Poole CF (1983) Chromatographia 17:370–374CrossRefGoogle Scholar
  10. 10.
    González-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gutiérrez-Álvarez MD (2012) Anal Chim Acta 721:173–181CrossRefGoogle Scholar
  11. 11.
    Poole CF, Poole SK (2011) J Sep Sci 34:888–900CrossRefGoogle Scholar
  12. 12.
    Fields PR, Sun Y, Stalcup AM (2011) J Chromatogr A 1218:467–475CrossRefGoogle Scholar
  13. 13.
    Poole CF, Atapattu SN, Poole SK, Bell AK (2009) Anal Chim Acta 652:32–53CrossRefGoogle Scholar
  14. 14.
    Wilkes JS, Zaworotko MJ (1992) J Chem Soc Chem Commun 965–967Google Scholar
  15. 15.
    Zhao Q, Eichhorn J, Pitner WR, Anderson JL (2009) Anal Bioanal Chem 395:225–234CrossRefGoogle Scholar
  16. 16.
    Anderson JL, Ding R, Ellern A, Armstrong DW (2005) J Am Chem Soc 127:593–604CrossRefGoogle Scholar
  17. 17.
    Ho WY, Hsieh YN, Lin WC, Kao CL, Huang PC, Yeh CF, Pan CY, Kuei CH (2010) Anal Meth 2:455–457CrossRefGoogle Scholar
  18. 18.
    Armstrong DW, He L, Liu YS (1999) Anal Chem 71:3873–3876CrossRefGoogle Scholar
  19. 19.
    Cagliero C, Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2012) J Chromatogr A 1268:130–138CrossRefGoogle Scholar
  20. 20.
    Ragonese C, Tranchida PQ, Sciarrone D, Mondello L (2009) J Chromatogr A 1216:8992–8997CrossRefGoogle Scholar
  21. 21.
    Seeley JV, Seeley SK, Libby EK, Breitbach ZS, Armstrong DW (2008) Anal Bioanal Chem 390:323–332CrossRefGoogle Scholar
  22. 22.
    Whitmarsh S (2012) Investigational Analysis, BP Research and Technology Chromatography today, Accessed 3 April 2014
  23. 23.
    Payagala T, Zhang Y, Wanigasekara E, Huang K, Breitbach ZS, Sharma PS, Sidisky LM, Armstrong DW (2009) Anal Chem 81:160–173CrossRefGoogle Scholar
  24. 24.
    Zapadlo M, Krupcik J, Majek P, Armstrong DW, Sandra P (2010) J Chromatogr A 1217:5859–5867CrossRefGoogle Scholar
  25. 25.
    Supeco Ionic Liquid GC Columns (2013), Accessed 3 April 2014
  26. 26.
    Abraham MH (1993) Chem Soc Rev 22:73–83CrossRefGoogle Scholar
  27. 27.
    Abraham MH, Ibrahim A, Zissimos AM (2004) J Chromatogr A 1037:29–47CrossRefGoogle Scholar
  28. 28.
    Abraham MH, Poole CF, Poole SK (1999) J Chromatogr A 842:79–114CrossRefGoogle Scholar
  29. 29.
    Breitbach ZS, Armstrong DW (2008) Anal Bioanal Chem 390:1605–1617CrossRefGoogle Scholar
  30. 30.
    Anderson JL, Ding J, Welton T, Armstrong DW (2002) J Am Chem Soc 124:14247–14254CrossRefGoogle Scholar
  31. 31.
    Ettre LS, Welter C, Kolb B (1993) Chromatographia 35:73–84CrossRefGoogle Scholar
  32. 32.
    Wasserscheid P, Welton T (2002) Ionic Liquids in Synthesis. Wiley-VCH Verlag GmbH & Co, MörlenbachCrossRefGoogle Scholar
  33. 33.
    Poole CF, Ahmed H, Kiridena W, Patchett CC, Koziol WW (2006) J Chromatogr A 1104:299–312CrossRefGoogle Scholar
  34. 34.
    Ragonese C, Tranchida PQ, Dugo P, Dugo G, Sidisky LM, Robillard MV, Mondello L (2009) Anal Chem 81:5561–5568CrossRefGoogle Scholar
  35. 35.
    Villegas C, Zhao Y, Curtis JM (2010) J Chromatogr A 1217:775–784CrossRefGoogle Scholar
  36. 36.
    Ragonese C, Sciarrone D, Tranchida PQ, Dugo P, Dugo G, Mondello L (2011) Anal Chem 83:7947–7954CrossRefGoogle Scholar
  37. 37.
    Purcaro G, Tranchida PQ, Ragonese C, Conte L, Dugo P, Dugo G, Mondello L (2010) Anal Chem 82:8583–8590CrossRefGoogle Scholar
  38. 38.
    Siegler WC, Crank JA, Armstrong DW, Synovec RE (2010) J Chromatogr A 1217:3144–3149CrossRefGoogle Scholar
  39. 39.
    Krupcik J, Gorovenko R, Spanik I, Bockova I, Sandra P, Armstrong DW (2013) J Chromatogr A 1301:225–236CrossRefGoogle Scholar
  40. 40.
    Poole CF, Poole SK (1989) Chem Rev 89:377–395CrossRefGoogle Scholar
  41. 41.
    Stern MJ, Van Hook WA, Wolfsberg M (1963) J Chem Phys 39:3179–3196Google Scholar
  42. 42.
    Schmarr HG, Slabizki P, Müntnich S, Metzger C, Gracia-Moreno E (2012) J Chromatogr A 1270:310–317CrossRefGoogle Scholar
  43. 43.
    Stevenson GR, Wehrmann GC, Reiter RC (1991) J Phys Chem 95:901–905Google Scholar
  44. 44.
    Mostafa AR, Hegazi AH, El-Gayar MS, Andersson JT (2009) Fuel 88:95–104CrossRefGoogle Scholar
  45. 45.
    Hegazi AH, Andersson JT, El-Gayar MS (2004) Fuel Proc Techn 85:1–19CrossRefGoogle Scholar
  46. 46.
    Kolbe N, Rheinberg OV, Andersson JT (2009) Energy Fuel 23:3024–3031CrossRefGoogle Scholar
  47. 47.
    Hashimoto SI, Yamada SI, Koga K (1976) J Am Chem Soc 98:7452–7453CrossRefGoogle Scholar
  48. 48.
    Wasinski FAH, Andersson JT (2007) J Chromatogr A 1157:376–385CrossRefGoogle Scholar
  49. 49.
    Omais B, Courtiade M, Charon N, Roullet C, Ponthus J, Thiebaut D (2012) J Chromatogr A 1226:61–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Inorganic and Analytical ChemistryUniversity of MuensterMuensterGermany
  2. 2.MEET—Münster Electrochemical Energy TechnologyMuensterGermany

Personalised recommendations