Skip to main content
Log in

Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We propose a disposable multiwell microcartridge with integrated amorphous silicon photosensors array for bio- and chemiluminescence-based bioassays, where the enzymatic reactions and the detection unit are coupled on the same glass substrate. Each well, made in a polydimethylsiloxane (PDMS) unit, hosts an enzymatic reaction that is monitored by one photosensor of the array. Photosensors were characterized in terms of their dark current background noise and response to different wavelengths of visible light in order to determine their suitability as detection devices for chemical luminescent phenomena. Calibration curves of the photosensors’ response to different luminescent systems were then evaluated by using the chemiluminescent reactions catalyzed by alkaline phosphatase and horseradish peroxidase and the bioluminescent reaction catalyzed by firefly luciferase. Limits of detection in the order of attomoles for chemiluminescence enzymes and femtomoles for luciferase and sensitivities in the range between 0.007 and 0.1 pA pmol−1 L were reached. We found that, without the need of cooling systems, the analytical performances of the proposed cartridge are comparable with those achievable with state-of-the-art thermoelectrically cooled charge-coupled device-based laboratory instrumentation. In addition, thanks to the small amount of generated output data, the proposed device allows the monitoring of long-lasting reactions with significant advantages in terms of data-storage needs, transmission bandwidth, ease of real-time signal processing and limited power consumption. Based on these results, the operation in model bioanalytical assays exploiting luminescent reactions was tested demonstrating that a-Si:H photosensors arrays, when integrated with PDMS microfluidic units, provide compact, sensitive and potentially low-cost microdevices for chemiluminescence and bioluminescence-based bioassays with a wide range of possible applications for in-field and point-of-care bio-analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abgrall P, Gue A-M (2007) Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng 17:R15–R49

    Article  Google Scholar 

  2. Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847

    Article  CAS  Google Scholar 

  3. Costantini F, Nascetti A, Scipinotti R, Domenici F, Sennato S, Gazza L, Bordi F, Pogna N, Manetti C, Caputo D, de Cesare G (2014) On-chip detection of multiple serum antibodies against epitopes of celiac disease by an array of amorphous silicon sensors. RSC Adv 4:2073–2080

    Article  CAS  Google Scholar 

  4. Seidel M, Niessner R (2008) Automated analytical microarrays: a critical review. Anal Bioanal Chem 391:1521–1544

    Article  CAS  Google Scholar 

  5. Marquette CA, Corgier BP, Blum LJ (2012) Recent advances in multiplex immunoassays. Bioanalysis 4:927–936

    Article  CAS  Google Scholar 

  6. Marquette CA, Blum LJ (2009) Chemiluminescent enzyme immunoassays: a review of bioanalytical applications. Bioanalysis 1:1259–1269

    Article  CAS  Google Scholar 

  7. Roda A, Guardigli M, Pasini P, Mirasoli M, Michelini E, Musiani M (2005) Bio- and chemiluminescence imaging in analytical chemistry. Anal Chim Acta 541:25–36

    Article  CAS  Google Scholar 

  8. Roda A, Pasini P, Guardigli M, Baraldini M, Musiani M, Mirasoli M (2000) Bio- and chemiluminescence in bioanalysis. Fresen J Anal Chem 366:752–759

    Article  CAS  Google Scholar 

  9. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Bioluminescence in analytical chemistry and in vivo imaging. Trac-Trends Anal Chem 28:307–322

    Article  CAS  Google Scholar 

  10. Mirasoli M, Guardigli M, Michelini E, Roda A (2014) Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 87:36–52

    Article  CAS  Google Scholar 

  11. Kricka LJ, Park JY (2011) Miniaturized analytical devices based on chemiluminescence, bioluminescence and electrochemiluminescence. In: Roda A (ed) Chemiluminescence and bioluminescence—past, present and future. RSC, Cambridge

    Google Scholar 

  12. Berthold F, Hennecke M, Wulf J (2011) Instrumentation for chemiluminescence and bioluminescence. In: Roda A (ed) Chemiluminescence and bioluminescence—past, present and future. RSC, Cambridge, pp 113–139

    Google Scholar 

  13. Roda A, Mirasoli M, Dolci LS, Buragina A, Bonvicini F, Simoni P, Guardigli M (2011) Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Anal Chem 83:3178–3185

    Article  CAS  Google Scholar 

  14. Roda A, Cevenini L, Michelini E, Branchini BR (2011) A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens Bioelectron 26:3647–3653

    Article  CAS  Google Scholar 

  15. Mirasoli M, Bonvicini F, Dolci LS, Zangheri M, Gallinella G, Roda A (2013) Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal Bioanal Chem 405:1139–1143

    Article  CAS  Google Scholar 

  16. Kamei T, Toriello NM, Lagally ET, Blazej RG, Scherer JR, Street RA, Mathies RA (2005) Microfluidic genetic analysis with an integrated a-Si:H detector. Biomed Microdevices 7:147–152

    Article  CAS  Google Scholar 

  17. Carlson DE (1977) Amorphous silicon solar cells. IEEE Trans Electr Dev 24:449–453

    Article  Google Scholar 

  18. Ibaraki N (1994) a-Si TFT technologies for am-LCDs. Materials Research Society Symposium Proceedings, Cambridge Univ Press, 336:749–749

  19. de Cesare G, Gavesi M, Palma F, Riccò B (2003) A novel a-si: H mechanical stress sensor. Thin Solid Films 427:191–195

    Article  Google Scholar 

  20. Caputo D, de Cesare G, Nascetti A, Tucci M (2008) Detailed study of amorphous silicon ultraviolet sensor with chromium silicide window layer. IEEE Trans Electr Dev 55:452–456

    Article  CAS  Google Scholar 

  21. Louro P, Fernandes M, Fantoni A, Lavareda G, Nunes de Carvalho C, Schwarz R, Vieira M (2006) An amorphous SIC/SI image photodetector with voltage-selectable spectral response. Thin Solid Films 511–512:167–171

    Article  Google Scholar 

  22. Caputo D, de Cesare G, Nascetti A, Palma F, Petri M (1998) Infrared photodetection at room temperature using photocapacitance in amorphous silicon structures. Appl Phys Lett 72:1229–1231

    Article  CAS  Google Scholar 

  23. Fixe F, Chu V, Prazeres D, Conde JP (2004) An on-chip photodetector for the quantification of DNA probes and targets in microarrays. Nucleic Acids Res 329:70–75

    Article  Google Scholar 

  24. de Cesare G, Caputo D, Nascetti A, Guiducci C, Riccò B (2006) a-Si:H ultraviolet sensor for deoxyribonucleic acid analysis. Appl Phys Lett 88:083904–083906

    Article  Google Scholar 

  25. Caputo D, de Cesare G, Nascetti A, Negri R (2006) Spectral tuned amorphous silicon p-i-n for DNA detection. J Non-Cryst Solids 352:2004–2006

    Article  CAS  Google Scholar 

  26. Caputo D, de Cesare G, Fanelli C, Nascetti A, Ricelli A, Scipinotti R (2012) Amorphous silicon photosensors for detection of Ochratoxin A in wine. IEEE Sens J 12:2674–2679

    Article  CAS  Google Scholar 

  27. Novo P, Prazeres DMF, Chu V, Conde JP (2011) Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes. Lab Chip 11:4063–4071

    Article  CAS  Google Scholar 

  28. Novo P, Moulas G, Prazeres DMF, Chu V, Conde JP (2013) Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensor Actuat B-Chem 176:232–240

    Article  CAS  Google Scholar 

  29. Caputo D, de Cesare G, Dolci LS, Mirasoli M, Nascetti A, Roda A, Scipinotti R (2013) Microfluidic chip with integrated a-Si:H photodiodes for chemiluminescence-based bioassays. IEEE Sens J 13:2595–2602

    Article  CAS  Google Scholar 

  30. Caputo D, de Cesare G, Scipinotti R, Mirasoli M, Roda A, Zangheri M, Nascetti A (2014) Chemiluminescence-based micro-total-analysis system with amorphous silicon photodiodes. Lect Notes Electr Eng 268:207–211

    Article  Google Scholar 

  31. Nascetti A, Truglio M, Valerio P, Caputo D, de Cesare G (2011) High dynamic range current-to-digital readout electronics for lab-on-chip applications. Proc 4th IEEE Int Work Adv Sensors Interfaces art. no. 6004691:77–81

  32. Wieczorek H (1995) Effects of trapping in a-Si: H diodes. Solid State Phenom 44–46:957–972

    Article  Google Scholar 

  33. Yang MH, Sun S, Kostov Y, Rasooly A (2010) Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab Chip 10:1011–1017

    Article  CAS  Google Scholar 

  34. Oswald S, Karsunke X, Dietrich R, Martlbauer E, Niessner R, Knopp D (2013) Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 405:6405–6415

    Article  CAS  Google Scholar 

  35. Heyries KA, Loughran MG, Hoffmann D, Homsy A, Blum LJ, Marquette CA (2008) Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosens Bioelectron 23:1812–1818

    Article  CAS  Google Scholar 

  36. Szkola A, Campbell K, Elliott CT, Niessner R, Seidel M (2013) Automated, high performance, flow-through chemiluminescence microarray for the multiplexed detection of phycotoxins. Anal Chim Acta 787:211–218

    Article  CAS  Google Scholar 

  37. Donhauser SC, Niessner R, Seidel M (2011) Sensitive quantification of Escherichia coil O157:H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem 83:3153–3160

    Article  CAS  Google Scholar 

  38. Pereira AT, Pimentel AC, Chu V, Prazeres DMF, Conde JP (2009) Chemiluminescence detection of horseradish peroxidase using an integrated amorphous silicon thin-film photosensor. IEEE Sens J 9:1282–1290

    Article  CAS  Google Scholar 

  39. Liu C-H, Chang Y-C, Norris TB, Zhong Z (2014) Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol 9:273–278

    Article  CAS  Google Scholar 

  40. Wang X, Amatatongchai M, Nacapricha D, Hofmann O, de Mello JC, Bradley DDC, de Mello AJ (2009) Thin-film organic photodiodes for integrated on-chip chemiluminescence detection—application to antioxidant capacity screening. Sensor Actuat B-Chem 140:643–648

    Article  CAS  Google Scholar 

  41. Matos Pires NM, Dong T, Hanke U, Hoivik N (2013) Integrated optical microfluidic biosensor using a polycarbazole photodetector for point-of-care detection of hormonal compounds. J Biomed Opt 18:097001

    Article  Google Scholar 

  42. Adam W, Bronstein I, Edwards B, Engel T, Reinhardt D, Schneider FW, Trofimov AV, Vasil’ev RF (1996) Electron exchange luminescence of spiroadamantane-substituted dioxetanes triggered by alkaline phosphatase. Kinetics and elucidation of pH effects. J Am Chem Soc 118:10400–10407

    Article  CAS  Google Scholar 

  43. Roda A, Pasini P, Musiani M, Girotti S, Baraldini M, Carrea G, Suozzi A (1996) Chemiluminescent low-light imaging of biospecific reactions on macro- and microsamples using a videocamera-based luminograph. Anal Chem 68:1073–1080

    Article  CAS  Google Scholar 

  44. Easton PM, Simmonds AC, Rakishev A, Egorov AM, Candeias LP (1996) Quantitative model of the enhancement of peroxidase-induced luminol luminescence. J Am Chem Soc 118:6619–6624

    Article  CAS  Google Scholar 

  45. Marzocchi E, Grilli S, Della Ciana L, Prodi L, Mirasoli M, Roda A (2008) Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. Anal Biochem 377:189–194

    Article  CAS  Google Scholar 

  46. Saleh L, Plieth C (2010) Total low-molecular-weight antioxidants as summary parameter, quantified in biological samples by a chemiluminescence inhibition assay. Nat Protoc 5:1627–1634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Italian Ministry of Instruction, University and Research: PRIN 2009 project: prot. 2009MB4AYL “Integration of biosensing and nanotechnology for medical diagnostics with high analytical performance” and PRIN 2010 project: prot. 20108ZSRTR “ARTEMIDE (Autonomous Real Time Embedded Multi-analyte Integrated Detection Environment): a fully integrated lab-on-chip for early diagnosis of viral infections”. Financial support was also provided by the Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia (Viale Regina Elena 291, 00161 Rome, Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mara Mirasoli or Augusto Nascetti.

Additional information

Mara Mirasoli and Augusto Nascetti contributed equally to the work.

Published in the topical collection Analytical Bioluminescence and Chemiluminescence with guest editors Elisa Michelini and Mara Mirasoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirasoli, M., Nascetti, A., Caputo, D. et al. Multiwell cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection: development, characterization and comparison with cooled-CCD luminograph. Anal Bioanal Chem 406, 5645–5656 (2014). https://doi.org/10.1007/s00216-014-7971-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7971-9

Keywords

Navigation