Skip to main content
Log in

Chemiluminescence microarrays in analytical chemistry: a critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

Achievements in the development of CL microarray analysis platforms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seidel M, Niessner R (2008) Automated analytical microarrays: a critical review. Anal Bioanal Chem 391:1521–1544

    CAS  Google Scholar 

  2. Schäferling M, Nagl S (2006) Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 385:500–517

    Google Scholar 

  3. Elsholz B, Wörl R, Blohm L, Albers J, Feucht H, Grunwald T, Jurgen B, Schweder T, Hintsche R (2006) Automated detection and quantitation of bacterial RNA by using electrical microarrays. Anal Chem 78:4794–4802

    CAS  Google Scholar 

  4. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotec 21:1192–1199

    CAS  Google Scholar 

  5. Marquette CA, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385:546–554

    CAS  Google Scholar 

  6. Marquette CA, Corgier BP, Blum LJ (2012) Recent advances in multiplex immunoassays. Bioanalysis 4:927–936

    CAS  Google Scholar 

  7. Fan AP, Cao ZJ, Li HA, Kai M, Lu JZ (2009) Chemiluminescence platforms in immunoassay and DNA analyses. Anal Sci 25:587–597

    CAS  Google Scholar 

  8. Mirasoli M, Guardigli M, Michelini E, Roda A (2014) Recent advancements in chemical luminescencebased lab-on-chip and microfluidic platforms for bioanalysis. J Pharmaceut Biomed 87:36–52

    CAS  Google Scholar 

  9. Gauglitz G (2010) Direct optical detection in bioanalysis: an update. Anal Bioanal Chem 398:2363–2372

    CAS  Google Scholar 

  10. Gauglitz G, Proll G (2008) Strategies for label-free optical detection. Adv Biochem Eng/Biotech 109:395–432

    CAS  Google Scholar 

  11. Knauer M, Ivleva NP, Liu X, Niessner R, Haisch C (2010) Surface-enhanced Raman scattering-based label-free microarray readout for the detection of microorganisms. Anal Chem 82:2766–2772

    CAS  Google Scholar 

  12. Roda A, Guardigli M, Michelini E, Mirasoli M, Pasini P (2003) Analytical bioluminescence and chemiluminescence. Anal Chem 75:462A–470A

    CAS  Google Scholar 

  13. Barni F, Lewis SW, Berti A, Miskelly GM, Lago G (2007) Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72:896–913

    CAS  Google Scholar 

  14. Roda A, Guardigli M, Pasini P, Mirasoli M, Michelini E, Musiani M (2005) Bio- and chemiluminescence imaging in analytical chemistry. Anal Chim Acta 541:25–36

    CAS  Google Scholar 

  15. Michelini E, Roda A (2012) Staying alive: new perspectives on cell immobilization for biosensing purposes. Anal Bioanal Chem 402:1785–1797

    CAS  Google Scholar 

  16. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303

    CAS  Google Scholar 

  17. Thorpe GH, Kricka LJ (1986) Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol 133:331–353

    CAS  Google Scholar 

  18. Dotsikas Y, Loukas YL (2004) Employment of 4-(1-imidazolyl)phenol as a luminol signal enhancer in a competitive-type chemiluminescence immunoassay and its comparison with the conventional antigenhorseradish peroxidase conjugate-based assay. Analyt Chim Acta 509:103–109

    CAS  Google Scholar 

  19. Garcia Sanchez F, Navas Diaz A, Gonzalez Garcia JA (1995) P-phenol derivatives as enhancers of the chemiluminescent luminol-horseradish peroxidase-H2O2 reaction: substituent effects. J Lumin 65:33–39

    CAS  Google Scholar 

  20. Luo JX, Yang XC (2003) Flow injection chemiluminescent immunoassay with para-phenylphenol and sodium tetraphenylborate as synergistic enhancers. Anal Chim Acta 485:57–62

    CAS  Google Scholar 

  21. Chouhan RS, Babu KV, Kumar MA, Neeta NS, Thakur MS, Rani BEA, Pasha A, Karanth NGK, Karanth NG (2006) Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device. Biosens Bioelectron 21:1264–1271

    CAS  Google Scholar 

  22. Lengger S, Otto J, Elsasser D, Schneider O, Tiehm A, Fleischer J, Niessner R, Seidel M (2014) Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3. Anal Bioanal Chem 406:3323–3334

    CAS  Google Scholar 

  23. Marquette CA, Hezerd P, Dgiuli A, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Sensor Actuat B-Chem 113:664–670

    CAS  Google Scholar 

  24. Li D, Ying Y, Wu J, Niessner R, Knopp D (2013) Comparison of monomeric and polymeric horseradish peroxidase as labels in competitive ELISA for small molecule detection. Microchim Acta 180:711–717

    CAS  Google Scholar 

  25. Lu G, Shen H, Cheng B, Chen Z, Marquette CA, Blum LJ, Tillement O, Roux S, Ledoux G, Ou M, Perriat P (2006) How surface-enhanced chemiluminescence depends on the distance from a corrugated metal film. Appl Phys Lett 89:223218

    Google Scholar 

  26. Lu GW, Cheng BL, Shen H, Chen ZH, Yang GZ, Marquette CA, Blum LJ, Tillement O, Roux S, Ledoux G, Descamps A, Perriat P (2006) Influence of the nanoscale structure of gold thin films upon peroxidaseinduced chemiluminescence. Appl Phys Lett 88:023903

    Google Scholar 

  27. Schuetz AJ, Winklmair M, Weller MG, Niessner R (1997) Proc SPIE 3105, Chemical, Biochemical and Environmental Fiber Sensors IX, 332–340

  28. Roda A, Guardigli M, Michelini E, Mirasoli M (2009) Bioluminescence in analytical chemistry and in vivo imaging. TRAC-Trend Anal Chem 28:307–322

    CAS  Google Scholar 

  29. Roda A, Mirasoli M, Dolci LS, Buragina A, Bonvicini F, Simoni P, Guardigli M (2011) Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Anal Chem 83:3178–3185

    CAS  Google Scholar 

  30. Baader J, Klapproth H, Bednar S, Brandstetter T, Ruehe J, Lehmann M, Freund I (2011) Polysaccharide microarrays with a CMOS based signal detection unit. Biosens Bioelectron 26:1839–1846

    CAS  Google Scholar 

  31. Wojciechowski JR, Shriver-Lake LC, Yamaguchi MY, Fuereder E, Pieler R, Schamesberger M, Winder C, Prall HJ, Sonnleitner M, Ligler FS (2009) Organic photodiodes for biosensor miniaturization. Anal Chem 81:3455–3461

    CAS  Google Scholar 

  32. Kricka LJ, Master SR, Joos TO, Fortina P (2006) Current perspectives in protein array technology. Ann Clin Biochem 43:457–467

    CAS  Google Scholar 

  33. Schena M, Heller RA, Theriault TP, Konrad K, Lachenmeier E, Davis RW (1998) Microarrays: biotechnology’s discovery platform for functional genomics. Trends Biotechnol 16:301–306

    CAS  Google Scholar 

  34. Stillman BA, Tonkinson JL (2000) FAST™ slides: a novel surface for microarrays. Biotechniques 29:630–635

    CAS  Google Scholar 

  35. Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. J Agric Food Chem 55:4933–4939

    CAS  Google Scholar 

  36. Karsunke XYZ, Niessner R, Seidel M (2009) Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal Bioanal Chem 395:1623–1630

    CAS  Google Scholar 

  37. Zhao L, Sun L, Chu X (2009) Chemiluminescence immunoassay. TRAC-Trend Anal Chem 28:404–415

    CAS  Google Scholar 

  38. Wolter A, Niessner R, Seidel M (2007) Preparation and characterization of functional poly(ethylene glycol) surfaces for the use of antibody microarrays. Anal Chem 79:4529–4537

    CAS  Google Scholar 

  39. Stears RL, Martinsky T, Schena M (2003) Trends in microarray analysis. Nat Med 9:140–145

    CAS  Google Scholar 

  40. Piehler J, Brecht A, Valiokas R, Liedberg B, Gauglitz G (2000) A high-density poly (ethylene glycol) polymer brush for immobilization on glass-type surfaces. Biosens Bioelectron 15:473–481

    CAS  Google Scholar 

  41. Piehler J, Brecht A, Hehl K, Gauglitz G (1999) Protein interactions in covalently attached dextran layers. Colloids Surf B: Biointerfaces 13:325–336

    CAS  Google Scholar 

  42. Charles PT, Taitt CR, Goldman ER, Rangasammy JG, Stenger DA (2004) Immobilization strategy and characterization of hydrogel-based thin films for interrogation of ligand binding with staphylococcal enterotoxin B (SEB) in a protein microarray format. Langmuir 20:270–272

    CAS  Google Scholar 

  43. Benters R, Niemeyer C, Wöhrle D (2001) Dendrimer-activated solid supports for nucleic acid and protein microarrays. ChemBioChem 2:686–694

    CAS  Google Scholar 

  44. Benters R, Niemeyer CM, Drutschmann D, Blohm D, Wöhrle D (2002) DNA microarrays with PAMAM dendritic linker systems. Nucleic Acids Res 30:e10

    Google Scholar 

  45. Templin MF, Stoll D, Schrenk M, Traub PC, Vöhringer CF, Joos TO (2002) Protein microarray technology. Drug Discov Today 7:815–822

    CAS  Google Scholar 

  46. Angenendt P, Glökler J, Sobek J, Lehrach H, Cahill DJ (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J Chromatogr A 1009:97–104

    CAS  Google Scholar 

  47. Donhauser SC, Niessner R, Seidel M (2009) Quantification of E. coli DNA on a flow-through chemiluminescence microarray readout system after PCR amplification. Anal Sci 25:669–674

    CAS  Google Scholar 

  48. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80:5854–5863

    CAS  Google Scholar 

  49. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    CAS  Google Scholar 

  50. Kricka LJ, Master S, Joos T, Fortina P (2006) Current perspectives in protein array technology. Ann Clin Biochem 43:457–467

    CAS  Google Scholar 

  51. Wutz K, Meyer VK, Wacheck S, Krol P, Gareis M, Noelting C, Struck F, Soutschek E, Boecher O, Niessner R, Seidel M (2013) New route for fast detection of antibodies against zoonotic pathogens in sera of slaughtered pigs by means of flow-through chemiluminescence immunochips. Anal Chem 85:5279–5285

    CAS  Google Scholar 

  52. FitzGerald SP, Lamont JV, McConnell RI, Benchikh EO (2005) Development of a high-throughput automated analyzer using biochip array technology. Clin Chem 51:1165–1176

    CAS  Google Scholar 

  53. Langer V, Niessner R, Seidel M (2011) Stopped-flow microarray immunoassay for detection of viable E. coli by use of chemiluminescence flow-through microarrays. Anal Bioanal Chem 399:1041–1050

    CAS  Google Scholar 

  54. Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Disc 5:310–321

    CAS  Google Scholar 

  55. Joos TO, Schrenk M, Höpfl P, Chowdhury U, Stoll D, Schorner D, Dürr M, Herick K, Rupp S, Sohn K, Hämmerle H (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21:2641–2650

    CAS  Google Scholar 

  56. Huang RP, Huang RC, Fan Y, Lin Y (2001) Simultaneous detection of multiple cytokines from conditioned media and patient’s sera by an antibody-based protein array system. Anal Biochem 294:55–62

    CAS  Google Scholar 

  57. Lin Y, Huang RC, Cao X, Wang SM, Shi Q, Huang RP (2003) Detection of multiple cytokines by protein arrays from cell lysate and tissue lysate. Clin Chem Lab Med 41:139–145

    CAS  Google Scholar 

  58. Karoonuthaisiri N, Charlermroj R, Uawisetwathana U, Luxananil P, Kirtikara K, Gajanandana O (2009) Development of antibody array for simultaneous detection of foodborne pathogens. Biosens Bioelectron 24:1641–1648

    CAS  Google Scholar 

  59. McBride JD, Gabriel FG, Fordham J, Kolind T, Barcenas-Morales G, Isenberg DA, Swana M, Delves PJ, Lund T, Cree IA, Roitt IM (2008) Screening autoantibody profiles in systemic rheumatic disease with a diagnostic protein microarray that uses a filtration-assisted nanodot array luminometric immunoassay (NALIA). Clin Chem 54:883–890

    CAS  Google Scholar 

  60. Moody MD, Van Arsdell SW, Murphy KP, Orencole SF, Burns C (2001) Array-based ELISAs for highthroughput analysis of human cytokines. Biotechniques 31:186

    CAS  Google Scholar 

  61. Feng YF, Ke X, Ma RS, Chen P, Hu GG, Liu FZ (2004) Parallel detection of autoantibodies with microarrays in rheumatoid diseases. Clin Chem 50:416–422

    CAS  Google Scholar 

  62. Whelan C, Shuralev E, O'Keeffe G, Hyland P, Kwok HF, Snoddy P, O'Brien A, Connolly M, Quinn P, Groll M, Watterson T, Call S, Kenny K, Duignan A, Hamilton MJ, Buddle BM, Johnston JA, Davis WC, Olwill SA, Clarke J (2008) Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle. Clin Vac Immunol 15:1834–1838

    CAS  Google Scholar 

  63. Urbanowska T, Mangialaio S, Zickler C, Cheevapruk S, Hasler P, Regenass S, Legay F (2006) Protein microarray platform for the multiplex analysis of biomarkers in human sera. J Immunol Methods 316:1–7

    CAS  Google Scholar 

  64. Huelseweh B, Ehricht R, Marschall HJ (2006) A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics 6:2972–2981

    CAS  Google Scholar 

  65. Marquette CA, Bouteille F, Corgier BP, Degiuli A, Blum LJ (2009) Anal Bioanal Chem 393:1191–1198

    CAS  Google Scholar 

  66. FitzGerald SP, McConnell RI, Huxley A (2008) Disposable screen-printed chemiluminescent biochips for the simultaneous determination of four point-of-care relevant proteins. J ProteomRes 7:450–455

    CAS  Google Scholar 

  67. Porter J, O'Loan N, Bell B, Mahoney J, McGarrity M, McConnell RI, Fitzgerald SP (2012) Development of an Evidence biochip array kit for the multiplex screening of more than 20 anthelmintic drugs. Anal Bioanal Chem 403:3051–3056

    CAS  Google Scholar 

  68. Marin SJ, Merrell M, McMillin GA (2011) Drugs of abuse detection in meconium: a comparison between ELISA and biochip microarray. J Anal Toxicol 35:40–4568

    CAS  Google Scholar 

  69. O’Mahony J, Moloney M, McConnell RI, Benchikh EO, Lowry P, Furey A, Danaher M (2011) Simultaneous detection of four nitrofuran metabolites in honey using a multiplexing biochip screening assay. Biosens Bioelectron 26:4076–4081

    Google Scholar 

  70. Popa ID, Schiriac EC, Cuciureanu R (2012) Multi-analytic detection of antibiotic residues in honey using a multiplexing biochip assay. Rev Med Chir Soc Med Nat Iasi 116:324–329

    Google Scholar 

  71. Popa ID, Schiriac EC, Matiut S, Cuciureanu R (2012) Method validation for simultaneous determination of 12 sulfonamides in honey using biochip array technology. Farmacia 60:143–154

    Google Scholar 

  72. Weller MG, Schuetz AJ, Winklmair M, Niessner R (1999) Highly parallel affinity sensor for the detection of environmental contaminants in water. Anal Chim Acta 393:29–41

    CAS  Google Scholar 

  73. Fall BI, Eberlein-König B, Behrendt H, Niessner R, Ring J, Weller MG (2003) Microarrays for the screening of allergen-specific IgE in human serum. Anal Chem 75:556–562

    CAS  Google Scholar 

  74. Fall BI, Niessner R (2009) Detection of known allergen-specific IgE antibodies by immunological methods. Method Mol Biol 509:107–122

    CAS  Google Scholar 

  75. Knecht BG, Strasser A, Dietrich R, Martlbauer E, Niessner R, Weller MG (2004) Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem 76:646–654

    CAS  Google Scholar 

  76. Pappert G, Rieger M, Niessner R, Seidel M (2010) Immunomagnetic nanoparticle-based sandwich chemiluminescence-ELISA for the enrichment and quantification of E. coli. Microchim Acta 168:1–8

    CAS  Google Scholar 

  77. Langer V, Hartmann G, Niessner R, Seidel M (2012) Rapid quantification of bioaerosols containing L. pneumophila by Coriolis® μ air sampler and chemiluminescence antibody microarrays. J Aerosol Sci 48:46–55

    CAS  Google Scholar 

  78. Cheek BJ, Steel AB, Torres MP, Yu YY, Yang HJ (2001) Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal Chem 73:5777–5783

    CAS  Google Scholar 

  79. Hatakeyama K, Tanaka T, Sawaguchi M, Iwadate A, Mizutani Y, Sasaki K, Tateishi N, Matsunaga T (2009) Microfluidic device using chemiluminescence and a DNA-arrayed thin film transistor photosensor for single nucleotide polymorphism genotyping of PCR amplicons from whole blood. Lab Chip 9:1052–1058

    CAS  Google Scholar 

  80. Loy A, Bodrossy L (2006) Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 363:106–119

    CAS  Google Scholar 

  81. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951

    Google Scholar 

  82. Liu RH, Yang JN, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831

    CAS  Google Scholar 

  83. Pappaert K, Vanderhoeven J, Van Hummelen P, Dutta B, Clicq D, Baron GV, Desmet G (2003) Enhancement of DNA micro-array analysis using a shear-driven micro-channel flow system. J Chromatogr A 1014:1–9

    CAS  Google Scholar 

  84. Donhauser SC, Niessner R, Seidel M (2011) Sensitive quantification of Escherichia coli O157:H7, Salmonella enterica, and Campylobacter jejuni by combining stopped polymerase chain reaction with chemiluminescence flow-through DNA microarray analysis. Anal Chem 83:3153–3160

    CAS  Google Scholar 

  85. Kloth K, Niessner R, Seidel M (2009) Development of an open stand-alone platform for regenerable automated microarrays. Biosens Bioelectron 24:2106–2112

    CAS  Google Scholar 

  86. Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Maertlbauer E, Niessner R, Seidel M (2009) A regenerable immunochip for the rapid determination of 13 different antibiotics in raw milk. Analyst 134:1433–1439

    CAS  Google Scholar 

  87. Wutz K, Niessner R, Seidel M (2011) Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchim Acta 173:1–9

    CAS  Google Scholar 

  88. Sauceda-Friebe JC, Karsunke XYZ, Vazac S, Biselli S, Niessner R, Knopp D (2011) Regenerable immuno-biochip for screening ochratoxin A in green coffee extract using an automated microarray chip reader with chemiluminescence detection. Anal Chim Acta 689:234–242

    CAS  Google Scholar 

  89. Oswald S, Karsunke XYZ, Dietrich R, Maertlbauer E, Niessner R, Knopp D (2013) Automated regenerable microarray-based immunoassay for rapid parallel quantification of mycotoxins in cereals. Anal Bioanal Chem 405:6405–6415

    CAS  Google Scholar 

  90. Szkola A, Campbell K, Elliott CT, Niessner R, Seidel M (2013) Automated, high performance, flowthrough chemiluminescence microarray for the multiplexed detection of phycotoxins. Anal Chim Acta 787:211–218

    CAS  Google Scholar 

  91. Szkola A, Linares EM, Worbs S, Dorner BM, Dietrich R, Martlbauer E, Niessner R, Seidel M (2014) Submitted to Analyst.

  92. Huebner M, Wutz K, Szkola A, Niessner R, Seidel M (2013) A glyco-chip for the detection of ricin by an automated chemiluminescence read-out system. Anal Sci 29:461–466

    CAS  Google Scholar 

  93. Rieger M, Cervino C, Sauceda JC, Niessner R, Knopp D (2009) Efficient hybridoma screening technique using capture antibody based microarrays. Anal Chem 81:2373–2377

    CAS  Google Scholar 

  94. Karsunke XYZ, Pschenitza M, Rieger M, Weber E, Niessner R, Knopp D (2011) Screening and characterization of new monoclonal anti-benzo a pyrene antibodies using automated flow-through microarray technology. J Immunol Methods 371:81–90

    CAS  Google Scholar 

  95. Heyries KA, Loughran MG, Hoffmann D, Homsy A, Blum LJ, Marquette CA (2008) Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosens Bioelectron 23:1812–1818

    CAS  Google Scholar 

  96. Marquette CA, Cretich M, Blum LJ, Chiari M (2007) Protein microarrays enhanced performance using nanobeads arraying and polymer coating. Talanta 71:1312–1318

    CAS  Google Scholar 

  97. Marquette CA, Degiuli A, Imbert-Laurenceau E, Mallet F, Chaix C, Mandrand B, Blum LJ (2005) Latex bead immobilisation in PDMS matrix for the detection of p53 gene point mutation and anti-HIV-1 capsid protein antibodies. Anal Bioanal Chem 381:1019–1024

    CAS  Google Scholar 

  98. Matsudaira T, Tsuzuki S, Wada A, Suwa A, Kohsaka H, Tomida M, Ito Y (2008) Automated microfluidic assay system for autoantibodies found in autoimmune diseases using a photoimmobilized autoantigen microarray. Biotechnol Prog 24:1384–1392

    CAS  Google Scholar 

  99. Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, Wolf H, Kloth T, Feller KA (2007) Automated 10-channel capillary chip immunodetector for biological agents detection. Biosens Bioelectron 22:1368–1375

    CAS  Google Scholar 

  100. Tai LW, Tseng KY, Wang ST, Chiu CC, Kow CH, Chang P, Chen C, Wang JY, Webster JR (2009) An automated microfluidic-based immunoassay cartridge for allergen screening and other multiplexed assays. Anal Bioch 391:98–105

    CAS  Google Scholar 

  101. Mirasoli M, Bonvicini F, Dolci LS, Zangheri M, Gallinella G, Roda A (2013) Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal Bioanal Chem 405:1139–1143

    CAS  Google Scholar 

  102. Koel M, Kaljurand M (2006) Application of the principles of green chemistry in analytical chemistry. Pure Appl Chem 78:1993–2002

    CAS  Google Scholar 

  103. Keith LH, Gron LU, Young JL (2007) Green analytical methodologies. Chem Rev 107:2695–2708

    CAS  Google Scholar 

  104. Matsuura S, Hamano Y, Kita H, Takagaki Y (1993) Preparation of mouse monoclonal-antibodies to okadaic acid and their binding in organic solvents. J Biochem 114:273–278

    CAS  Google Scholar 

  105. Armenta S, Garrigues S, de la Guardia (2008) Green analytical chemistry. TRAC-Anal Chem 27:497–511

    CAS  Google Scholar 

  106. Hassanain NA, Hassanain MA, Ahmed WM, Shaapan RM, Barakat AM, Hassan A (2013) Public health importance of foodborne pathogens. W J Med Sci 9:208–222

    Google Scholar 

  107. Forsythe SJ (2013) The microbiology of safe food. Wiley-Blackwell, Oxford

    Google Scholar 

  108. Settanni L, Corsetti A (2007) The use of multiplex PCR to detect and differentiate food-and beverage-associated microorganisms: a review. J Microbiol Methods 69:1–22

    CAS  Google Scholar 

  109. Edwards MC, Gibbs RA (1994) Multiplex PCR: advantages, development, and applications. PCRMethods Appl 3:S65–S75

    CAS  Google Scholar 

  110. Soler C, Pico Y (2007) Recent trends in liquid chromatography-tandem mass spectrometry to determine pesticides and their metabolites in food. TRAC-Trend Anal Chem 26:103–115

    CAS  Google Scholar 

  111. Farré M, Barceló D, Barceló D (2013) Analysis of emerging contaminants in food. TRAC-Trend Anal Chem 43:240–253

    Google Scholar 

  112. Kujawski MW, Namiesnik J (2008) Challenges in preparing honey samples for chromatographic determination of contaminants and trace residues. TRAC-Trend Anal Chem 27:785–793

    CAS  Google Scholar 

  113. McDonald M, Granelli K, Sjoberg P (2007) Rapid multi-residue method for the quantitative determination and confirmation of glucocorticosteroids in bovine milk using liquid chromatographyelectrospray ionization-tandem mass spectrometry. Anal Chim Acta 588:20–25

    CAS  Google Scholar 

  114. Bohm D, Stachel C, Gowik P (2009) Multi-method for the determination of antibiotics of different substance groups in milk and validation in accordance with Commission Decision 2002/657/EC. J Chromatogr A 1216:8217–8223

    CAS  Google Scholar 

  115. Mitchell J, Griffiths M, McEwen S, McNab W, Yee A (1998) Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance. J Food Prot 61:742–756

    CAS  Google Scholar 

  116. Strasser A, Dietrich R, Usleber E, Martlbauer E (2003) Immunochemical rapid test for multiresidue analysis of antimicrobial drugs in milk using monoclonal antibodies and hapten-glucose oxidase conjugates. Anal Chim Acta 495:11–19

    CAS  Google Scholar 

  117. Khaniki GRJ (2007) Chemical contaminants in milk and public health concerns: a review. Intern J Dairy Sci 2:104–115

    CAS  Google Scholar 

  118. Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, Nakazawa H, Kozaki S (2003) An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130:33–40

    CAS  Google Scholar 

  119. Loncarevic S, Jørgensen H, Løvseth A, Mathisen T, Rørvik L (2005) Diversity of Staphylococcus aureus enterotoxin types within single samples of raw milk and raw milk products. J Appl Microbiol 98:344–350

    CAS  Google Scholar 

  120. Dietrich R, Mauersberger K, Martlbauer E (1997) Use of the MTT test for the detection of B-cereus enterotoxin. Arch Lebensmittelhyg 48:77–81

    Google Scholar 

  121. Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    CAS  Google Scholar 

  122. Marquez-Sillero I, Cardenas S, Valcarcel M (2013) Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector. J Chromatogr A 1313:253–258

    CAS  Google Scholar 

  123. Leal WS (2013) Healing power of honey. Proc Natl Acad Sci U S A 110:8763–8764

    CAS  Google Scholar 

  124. Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18

    CAS  Google Scholar 

  125. Michaud V (2005) Antibiotic residues in honey-the FEEDM view. Apiacta 40:52–54

    Google Scholar 

  126. Stolker A, Brinkman U (2005) Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review. J Chromatogr A 1067:15–53

    CAS  Google Scholar 

  127. Placinta C, D'Mello J, Macdonald A (1999) A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Technol 78:21–37

    CAS  Google Scholar 

  128. Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605:111–129

    CAS  Google Scholar 

  129. Sofos JN (2008) Challenges to meat safety in the 21st century. Meat Sci 78:3–13

    Google Scholar 

  130. Baer AA, Miller MJ, Dilger AC (2013) Pathogens of interest to the pork industry: a review of research on interventions to assure food safety. Compr Rev Food Sci F 12:183–217

    Google Scholar 

  131. Slifko TR, Smith HV, Rose JB (2000) Emerging parasite zoonoses associated with water and food. Int J Parasitol 30:1379–1393

    CAS  Google Scholar 

  132. Premanandh J (2013) Horse meat scandal–A wake-up call for regulatory authorities. Food Control 34:568–569

    Google Scholar 

  133. Bánáti D (2014) European perspectives of food safety. J Sci Food Agric 94:1941–1946

    Google Scholar 

  134. Pascoal A, Prado M, Castro J, Cepeda A, Barros-Velazquez J (2004) Survey of authenticity of meat species in food products subjected to different technological processes, by means of PCR-RFLP analysis. Eur Food Res Technol 218:306–312

    CAS  Google Scholar 

  135. Poms RE, Klein CL, Anklam E (2004) Methods for allergen analysis in food: a review. Food Addit Contam 21:1–31

    CAS  Google Scholar 

  136. Kiening M, Niessner R, Drs E, Baumgartner S, Krska R, Bremer M, Tomkies V, Reece P, Danks C, Immer U, Weller MG (2005) Sandwich immunoassays for the determination of peanut and hazelnut traces in foods. J Agric Food Chem 53:3321–3327

    CAS  Google Scholar 

  137. Poms RE, Anklam E, Kuhn M (2004) Polymerase chain reaction techniques for food allergen detection. J AOAC Int 87:1391–1397

    CAS  Google Scholar 

  138. Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528

    CAS  Google Scholar 

  139. James D, Schmidt AM, Wall E, Green M, Masri S (2003) Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. J Agric Food Chem 51:5829–5834

    CAS  Google Scholar 

  140. Campas M, Prieto-Simon B, Marty JL (2007) Biosensors to detect marine toxins: assessing seafood safety. Talanta 72(3):884–895

    CAS  Google Scholar 

  141. Van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108:133–141

    Google Scholar 

  142. Flanagan AF, Callanan KR, Donlon J, Palmer R, Forde A, Kane M (2001) A cytotoxicity assay for the detection and differentiation of two families of shellfish toxins. Toxicon 39:1021–1027

    CAS  Google Scholar 

  143. Zwiener C (2007) Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal Bioanal Chem 387:1159–1162

    CAS  Google Scholar 

  144. Zwiener C (2012) Analytical challenges in environmental and geosciences. Anal Bioanal Chem 403:2469–2470

    CAS  Google Scholar 

  145. Snyder SA, Westerhoff P, Yoon Y, Sedlak DL (2003) Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ Engin Sci 20(5):449–469

    CAS  Google Scholar 

  146. Richardson SD, Ternes TA (2005) Water analysis: emerging contaminants and current issues. Anal Chem 77:3807–3838

    CAS  Google Scholar 

  147. Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4614–4648

    CAS  Google Scholar 

  148. Leusch FDL, Khan SJ, Laingam S, Prochazka E, Froscio S, Trinh T, Chapman HF, Humpage A (2014) Assessment of the application of bioanalytical tools as surrogate measure of chemical contaminants in recycled water. Water Res 49:300–315

    CAS  Google Scholar 

  149. Huckele S, Track T (2013) Risk management of emerging compounds and pathogens in the water cycle (RiSKWa). Environ Sci Eur 25:1–4

    Google Scholar 

  150. Rusin PA, Rose JB, Haas CN, Gerba CP (1997) Risk assessment of opportunistic bacterial pathogens in drinking water. Rev Environ Contam Toxicol 152:57–83

    CAS  Google Scholar 

  151. McKay A (1992) Viable but non-culturable forms of potentially pathogenic bacteria in water. Lett Appl Microbiol 14:129–135

    Google Scholar 

  152. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69(2):357–371

    CAS  Google Scholar 

  153. Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335

    CAS  Google Scholar 

  154. Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Cur Opin Biotechnol 19:260–265

    CAS  Google Scholar 

  155. de Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJ, Pereira MJ (2004) Microcystin-producing blooms—a serious global public health issue. Ecotoxicol Environ Saf 59:151–163

    Google Scholar 

  156. Rompré A, Servais P, Baudart J, de-Roubin MR, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49:31–54

    Google Scholar 

  157. Connelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 402:117–127

    CAS  Google Scholar 

  158. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624

    CAS  Google Scholar 

  159. WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  160. WHO (2011) Guidelines for drinking water quality, 4th edn. World Health Organization, Geneva

    Google Scholar 

  161. Rudi K, Moen B, Dromtorp SM, Holck AL (2005) Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl Environ Microbiol 71:1018–1024

    CAS  Google Scholar 

  162. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67:310–320

    CAS  Google Scholar 

  163. Pei L, Rieger M, Lengger S, Ott S, Zawadsky C, Hartmann NM, Selinka HC, Tiehm A, Niessner R, Seidel M (2012) Combination of crossflow ultrafiltration, monolithic affinity filtration, and quantitative reverse transcriptase PCR for rapid concentration and quantification of model viruses in water. Environ Sci Technol 46:10073–10080

    CAS  Google Scholar 

  164. Lin J, Ganesh A (2013) Water quality indicators: bacteria, coliphages, enteric viruses. Int J Environ Health Res 23:484–506

    CAS  Google Scholar 

  165. Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci Total Environ 326:151–180

    CAS  Google Scholar 

  166. Peccia J, Milton DK, Reponen T, Hill J (2008) A role for environmental engineering and science in preventing bioaerosol-related disease. Environ Sci Technol 42:4631–4637

    CAS  Google Scholar 

  167. Xu Z, Wu Y, Shen F, Chen Q, Tan M, Yao M (2011) Bioaerosol science, technology, and engineering: past, present, and future. Aerosol Sci Technol 45:1337–1349

    CAS  Google Scholar 

  168. Walser SM, Gerstner DG, Brenner B, Höller C, Liebl B, Herr CE (2014) Assessing the environmental health relevance of cooling towers–a systematic review of legionellosis outbreaks. Int J Hyg Environ Health 217:145–154

    Google Scholar 

  169. Kricka L (2003) Clinical applications of chemiluminescence. Anal Chim Acta 500:279–286

    CAS  Google Scholar 

  170. Kricka LJ (2001) Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century. Clin Chim Acta 307(1):219–223

    CAS  Google Scholar 

  171. Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO (2009) Protein microarrays for diagnostic assays. Anal Bioanal Chem 393:1407–1416

    CAS  Google Scholar 

  172. Mezzasoma L, Bacarese-Hamilton T, Di Cristina M, Rossi R, Bistoni F, Crisanti A (2002) Antigen microarrays for serodiagnosis of infectious diseases. Clin Chem 48:121–130

    CAS  Google Scholar 

  173. Kingsmore SF (2006) Multiplexed protein measurement: Technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5:310–320

    CAS  Google Scholar 

  174. Peters FT (2011) Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology. Clin Biochem 44:54–65

    CAS  Google Scholar 

  175. Maurer HH (2005) Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LCMS/MS) relevant to clinical and forensic toxicology. Clin Biochem 38:310–318

    CAS  Google Scholar 

  176. Gronholm M, Lillsunde P (2001) A comparison between on-site immunoassay drug-testing devices and laboratory results. Forensic Sci Int 121:37–46

    CAS  Google Scholar 

  177. Toennes SW, Kauert GF, Steinmeyer S, Moeller MR (2005) Driving under the influence of drugs - evaluation of analytical data of drugs in oral fluid, serum and urine, and correlation with impairment symptoms. Forensic Sci Int 152:149–155

    CAS  Google Scholar 

  178. Rahman S, Hoppensteadt D, Cunanan J, Davis R, Sadeghi N, Kaul I, Fareed J (2011) Biochip array analysis of various mediators of inflammation in disseminated intravascular coagulation. Blood 118:998

    Google Scholar 

  179. Haas CN (2002) The role of risk analysis in understanding bioterrorism. Risk Anal 22:671–677

    Google Scholar 

  180. Rotz LD, Hughes JM (2004) Advances in detecting and responding to threats from bioterrorism and emerging infectious disease. Nat Med 10:S130–S136

    CAS  Google Scholar 

  181. Marazuela M, Bogialli S (2009) A review of novel strategies of sample preparation for the determination of antibacterial residues in foodstuffs using liquid chromatography-based analytical methods. Anal Chim Acta 645:5–17

    CAS  Google Scholar 

  182. Mol HG, Plaza-Bolaños P, Zomer P, de Rijk TC, Stolker AA, Mulder PP (2008) Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes. Anal Chem 80:9450–9459

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation, the Federal Ministry of Education and Research, the Bavarian Research Foundation, and the German Ministry of Economic Affairs and Energy (via AIF and FEI) for continuous financial support of CL microarray development. We thank Dr Natalia Ivleva and Dr Elisangela Linares for fruitful discussions and corrections during preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seidel.

Additional information

Published in the topical collection Analytical Bioluminescence and Chemiluminescence with guest editors Elisa Michelini and Mara Mirasoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, M., Niessner, R. Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 406, 5589–5612 (2014). https://doi.org/10.1007/s00216-014-7968-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7968-4

Keywords

Navigation