Analytical and Bioanalytical Chemistry

, Volume 406, Issue 22, pp 5283–5292 | Cite as

Validation of an assay for the determination of levoglucosan and associated monosaccharide anhydrides for the quantification of wood smoke in atmospheric aerosol

  • Rebecca L. Cordell
  • Iain R. White
  • Paul S. MonksEmail author
Research Paper


Biomass burning is becoming an increasing contributor to atmospheric particulate matter, and concern is increasing over the detrimental health effects of inhaling such particles. Levoglucosan and related monosaccharide anhydrides (MAs) can be used as tracers of the contribution of wood burning to total particulate matter. An improved gas chromatography–mass spectrometry method to quantify atmospheric levels of MAs has been developed and, for the first-time, fully validated. The method uses an optimised, low-volume methanol extraction, derivitisation by trimethylsilylation and analysis with high-throughput gas chromatography–mass spectrometry (GC–MS). Recovery of approximately 90 % for levoglucosan, and 70 % for the isomers galactosan and mannosan, was achieved using spiked blank filters estimates. The method was extensively validated to ensure that the precision of the method over five experimental replicates on five repeat experimental occasions was within 15 % for low, mid and high concentrations and accuracy between 85 and 115 %. The lower limit of quantification (LLOQ) was 0.21 and 1.05 ng m−3 for levoglucosan and galactosan/mannosan, respectively, where the assay satisfied precisions of ≤20 % and accuracies 80–120 %. The limit of detection (LOD) for all analytes was 0.105 ng m−3. The stability of the MAs, once deposited on aerosol filters, was high over the short term (4 weeks) at room temperature and over longer periods (3 months) when stored at −20 °C. The method was applied to determine atmospheric levels of MAs at an urban background site in Leicester (UK) for a month. Mean concentrations of levoglucosan over the month of May were 21.4 ± 18.3 ng m−3, 7.5 ± 6.1 ng m−3 mannosan and 1.8 ± 1.3 ng m−3 galactosan.


Monosaccharide anhydride levels and percent contribution to PM10 from filter punches taken every 24 h at an urban background site in Leicester, analysed by GC–MS. G galactosan, M mannosan, L levoglucosan


Levoglucosan Monosaccharide anhydrides GC–MS Wood burning 



This study was funded under the Joaquin (Joint Air Quality Initiative), an EU cooperation project supported by the INTERREG IVB North West Europe programme ( We are grateful to the anonymous referees for their detailed and constructive comments.


  1. 1.
    Stohl A, Berg T, Burkhart JF, Fjǽraa AM, Forster C, Herber A, Hov Ø, Lunder C, McMillan WW, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Ström J, Tørseth K, Treffeisen R, Virkkunen K, Yttri KE (2007) Arctic smoke—record high air pollution levels in the European Arctic due to agricultural fires in eastern Europe in spring 2006. Atmos Chem Phys 7(2):511–534Google Scholar
  2. 2.
    Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez-Ochoa A, Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ 42(32):7530–7543CrossRefGoogle Scholar
  3. 3.
    Puxbaum H, Caseiro A, Sánchez-Ochoa A, Kasper-Giebl A, Claeys M, Gelencsér A, Legrand M, Preunkert S, Pio C (2007) Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. J Geophys Res Atmos 112(D23):D23S05CrossRefGoogle Scholar
  4. 4.
    Caseiro A, Bauer H, Schmidl C, Pio CA, Puxbaum H (2009) Wood burning impact on PM10 in three Austrian regions. Atmos Environ 43(13):2186–2195CrossRefGoogle Scholar
  5. 5.
    Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56(6):709–742CrossRefGoogle Scholar
  6. 6.
    Szidat S, Jenk TM, Synal H-A, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res: Atmos 111(D7), D07206Google Scholar
  7. 7.
    Sandradewi J, Prévôt ASH, Alfarra MR, Szidat S, Wehrli MN, Ruff M, Weimer S, Lanz VA, Weingartner E, Perron N, Caseiro A, Kasper-Giebl A, Puxbaum H, Wacker L, Baltensperger U (2008) Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos Chem Phys Discuss 8(2):8091–8118CrossRefGoogle Scholar
  8. 8.
    Reche C, Viana M, Amato F, Alastuey A, Moreno T, Hillamo R, Teinila K, Saarnio K, Seco R, Penuelas J, Mohr C, Prevot AS, Querol X (2012) Biomass burning contributions to urban aerosols in a coastal Mediterranean city. Sci Total Environ 427–428:175–190CrossRefGoogle Scholar
  9. 9.
    European Environment Agency (2013) Environmental indicator report 2013. Natural resources and human well-being in a green economy.
  10. 10.
    Kuo LJ, Louchouarn P, Herbert BE (2011) Influence of combustion conditions on yields of solvent-extractable anhydrosugars and lignin phenols in chars: implications for characterizations of biomass combustion residues. Chemosphere 85(5):797–805CrossRefGoogle Scholar
  11. 11.
    Elias VO, Simoneit BRT, Cordeiro RC, Turcq B (2001) Evaluating levoglucosan as an indicator of biomass burning in Carajás, Amazônia: a comparison to the charcoal record. Geochim Cosmochim Ac 65(2):267–272CrossRefGoogle Scholar
  12. 12.
    Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33(2):173–182CrossRefGoogle Scholar
  13. 13.
    Simoneit BRT (2002) Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17(3):129–162CrossRefGoogle Scholar
  14. 14.
    Fraser MP, Lakshmanan K (2000) Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ Sci Technol 34(21):4560–4564CrossRefGoogle Scholar
  15. 15.
    Fabbri D, Torri C, Simoneit BRT, Marynowski L, Rushdi AI, Fabiańska MJ (2009) Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos Environ 43(14):2286–2295CrossRefGoogle Scholar
  16. 16.
    Fabbri D, Marynowski L, Fabiańska MJ, Zatoń M, Simoneit BRT (2008) Levoglucosan and other cellulose markers in pyrolysates of miocene lignites: geochemical and environmental implications. Environ Sci Technol 42(8):2957–2963CrossRefGoogle Scholar
  17. 17.
    Schmidl C, Marr IL, Caseiro A, Kotianová P, Berner A, Bauer H, Kasper-Giebl A, Puxbaum H (2008) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42(1):126–141CrossRefGoogle Scholar
  18. 18.
    Louchouarn P, Kuo L-J, Wade TL, Schantz M (2009) Determination of levoglucosan and its isomers in size fractions of aerosol standard reference materials. Atmos Environ 43(35):5630–5636CrossRefGoogle Scholar
  19. 19.
    Garcia-Hurtado E, Pey J, Borrás E, Sánchez P, Vera T, Carratalá A, Alastuey A, Querol X, Vallejo VR (2014) Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires. Atmos Environ 89:85–92CrossRefGoogle Scholar
  20. 20.
    Zdrahal Z, Oliveira J, Vermeylen R, Claeys M, Maenhaut W (2002) Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environ Sci Technol 36(4):747–753CrossRefGoogle Scholar
  21. 21.
    Pashynska V, Vermeylen R, Vas G, Maenhaut W, Claeys M (2002) Development of a gas chromatographic/ion trap mass spectrometric method for the determination of levoglucosan and saccharidic compounds in atmospheric aerosols. Application to urban aerosols. J Mass Spectrom 37(12):1249–1257CrossRefGoogle Scholar
  22. 22.
    Hsu CL, Cheng CY, Lee CT, Ding WH (2007) Derivatization procedures and determination of levoglucosan and related monosaccharide anhydrides in atmospheric aerosols by gas chromatography-mass spectrometry. Talanta 72(1):199–205CrossRefGoogle Scholar
  23. 23.
    Saffari A, Daher N, Samara C, Voutsa D, Kouras A, Manoli E, Karagkiozidou O, Vlachokostas C, Moussiopoulos N, Shafer MM, Schauer JJ, Sioutas C (2013) Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki. Environ Sci Technol 47(23):13313–13320CrossRefGoogle Scholar
  24. 24.
    Yttri KE, Dye C, Slørdal LH, Braathen O-A (2005) Quantification of monosaccharide anhydrides by liquid chromatography combined with mass spectrometry: application to aerosol samples from an urban and a suburban site influenced by small-scale wood burning. J Air Waste Manage Assoc 55(8):1169–1177CrossRefGoogle Scholar
  25. 25.
    Saarnio K, Niemi JV, Saarikoski S, Aurela M, Timonen H, Teinilä K, Myllynrn M, Frey A, Lamberg H, Jokiniemi J, Hillamo R (2012) Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area. Boreal Environ Res 17:163–183Google Scholar
  26. 26.
    Saarnio K, Teinilä K, Saarikoski S, Carbone S, Gilardoni S, Timonen H, Aurela M, Hillamo R (2013) Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler-high-performance anion-exchange chromatography-mass spectrometry (PILS–HPAEC–MS). Atmos Meas Tech 6(10):2839–2849CrossRefGoogle Scholar
  27. 27.
    Harrison RM, Beddows DCS, Hu L, Yin J (2012) Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations. Atmos Chem Phys 12(17):8271–8283Google Scholar
  28. 28.
    Kuo L-J, Herbert BE, Louchouarn P (2008) Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? Org Geochem 39(10):1466–1478CrossRefGoogle Scholar
  29. 29.
    Larsen RK, Schantz MM, Wise SA (2006) Determination of levoglucosan in particulate matter reference materials. Aerosol Sci Tech 40(10):781–787CrossRefGoogle Scholar
  30. 30.
    U.S. Food and Drug Administration (2011) Guidance for industry process validation: General principles and practices.
  31. 31.
    Jonker MTO, Koelmans AA (2002) Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism. Environ Sci Technol 36(19):4107–4113CrossRefGoogle Scholar
  32. 32.
    Hennigan CJ, Sullivan AP, Collett JL, Robinson AL (2010) Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys Res Lett 37(9), L09806CrossRefGoogle Scholar
  33. 33.
    Simpson CD, Dills RL, Katz BS, Kalman DA (2004) Determination of levoglucosan in atmospheric fine particulate matter. J Air Waste Manage (1995) 54(6):689–694CrossRefGoogle Scholar
  34. 34.
    Hoffmann D, Tilgner A, Iinuma Y, Herrmann H (2009) Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ Sci Technol 44(2):694–699CrossRefGoogle Scholar
  35. 35.
    Shakya KM, Louchouarn P, Griffin RJ (2011) Lignin-derived phenols in houston aerosols: implications for natural background sources. Environ Sci Technol 45(19):8268–8275CrossRefGoogle Scholar
  36. 36.
    Ward TJ, Hamilton RF Jr, Dixon RW, Paulsen M, Simpson CD (2006) Characterization and evaluation of smoke tracers in PM: results from the 2003 Montana wildfire season. Atmos Environ 40(36):7005–7017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rebecca L. Cordell
    • 1
  • Iain R. White
    • 1
  • Paul S. Monks
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of LeicesterLeicesterUK

Personalised recommendations