Skip to main content
Log in

Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reports on electrochemiluminescent sensors and biosensors based on polyluminol/hydrogel composite sensing layers using chemical or biological membranes as hydrogel matrices. In this work, luminol is electropolymerized under near-neutral conditions onto screen-printed electrode (SPE)-supported hydrogel films. The working electrode coated with a hydrogel film is soaked in a solution containing monomeric luminol units, allowing the monomeric luminol units to diffuse inside the porous matrix to the electrode surface where they are electropolymerized by cyclic voltammetry (CV). Sensors and enzymatic biosensors for H2O2 and choline detection, respectively, have been developed, using choline oxidase (ChOD) as a model enzyme. In this case, hydrogel is used both as the enzymatic immobilization matrix and as a template for the electrosynthesis of polyluminol. The enzyme was immobilized by entrapment in the gel matrix during its formation before electropolymerization of the monomer. Several parameters have been optimized in terms of polymerization conditions, enzyme loading, and average pore size. Using calcium alginate or tetramethoxysilane (TMOS)-based silica as porous matrix, H2O2 and choline detection are reported down to micromolar concentrations with three orders of magnitude wide dynamic ranges starting from 4 × 10−7 M. Polyluminol/hydrogel composites appear as suitable electrochemiluminescence (ECL)-active sensing layers for the design of new reagentless and disposable easy-to-use optical sensors and biosensors, using conventional TMOS-based silica gel or the more original and easier to handle calcium alginate, reported here for the first time in such a configuration, as the biocompatible hydrogel matrix.

Elaboration of electrochemiluminent polyluminol/hydrogel composite sensing layers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Gerard M, Chaubey A, Malhotra BD (2002) Biosens Bioelectron 17:345–359

    Article  CAS  Google Scholar 

  2. Gupta R, Chaudhury NK (2007) Biosens Bioelectron 22:2387–2399

    Article  CAS  Google Scholar 

  3. Rodriguez BB, Bolbot JA, Tothill IE (2004) Anal Bioanal Chem 380:284–292

    Article  CAS  Google Scholar 

  4. Neves S, Fonseca CP (2002) J Power Sources 107:13–17

    Article  CAS  Google Scholar 

  5. Chaubey A, Pande KK, Malhotra BD (2003) Anal Sci 19:1477–1480

    Article  CAS  Google Scholar 

  6. Widera J, Cox JA (2002) Electrochem Commun 4:118–122

    Article  CAS  Google Scholar 

  7. Verghese MM, Ramanathan K, Ashraf SM, Kamalasanan MN, Malhotra BD (1996) Chem Mater 8:822–824

    Article  CAS  Google Scholar 

  8. Hulteen JC, Martin CR (1997) J Mater Chem 7:1075–1087

    Article  CAS  Google Scholar 

  9. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Sensors Actuators B 139:214–221

    Article  CAS  Google Scholar 

  10. Montilla F, Cotarelo MA, Morallon E (2009) J Mater Chem 19:305–310

    Article  CAS  Google Scholar 

  11. Salinas-Torres D, Montilla F, Huerta F, Morallon E (2011) Electrochim Acta 56:3620–3625

    Article  CAS  Google Scholar 

  12. Shan D, Wang S, He Y, Xue H (2008) Mater Sci Eng C 28:213–217

    Article  CAS  Google Scholar 

  13. Kotanen CN, Tlili C, Guiseppi-Elie A (2013) Talanta 103:228–235

    Article  CAS  Google Scholar 

  14. Luo Y-C, Do J-S (2004) Biosens Bioelectron 20:15–23

    Article  CAS  Google Scholar 

  15. Niwa O, Hikita M, Tamamura T (1985) Makromol Chem Rapid Commun 6:375–379

    Article  CAS  Google Scholar 

  16. Selampinar F, Akbulut U, Yalcin T, Suzer S, Toppare L (1994) Synth Met 62:201–206

    Article  CAS  Google Scholar 

  17. Ruckenstein E, Chen J-H (1990) Polymer 32:1230–1235

    Article  Google Scholar 

  18. Brahim S, Guiseppi-Elie A (2005) Electroanalysis 17:556–570

    Article  CAS  Google Scholar 

  19. Kim BC, Spinks GM, Wallace GG, John R (2000) Polymer 41:1783–1790

    Article  CAS  Google Scholar 

  20. Nath A, Contractor AQ (2004) Proc Indian Natl Sci Acad A 70:469–476

    CAS  Google Scholar 

  21. Marquette CA, Leca BD, Blum LJ (2001) Luminescence 16:159

    Article  CAS  Google Scholar 

  22. Marquette CA, Blum LJ (2006) Anal Bioanal Chem 385:546–554

    Article  CAS  Google Scholar 

  23. Sassolas A, Blum LJ, Leca-Bouvier BD (2008) Anal Bioanal Chem 390:865–871

    Article  CAS  Google Scholar 

  24. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Anal Bioanal Chem 394:971–980

    Article  CAS  Google Scholar 

  25. Ikuta S, Imamura S, Misaki H, Horiuti Y (1977) J Biochem 82:1741–1749

    CAS  Google Scholar 

  26. Leca BD, Verdier AM, Blum LJ (2001) Sensors Actuators B 74:190–193

    Article  CAS  Google Scholar 

  27. Tsafack VC, Marquette CA, Leca B, Blum LJ (2000) Analyst 125:151–155

    Article  CAS  Google Scholar 

  28. Lei C-X, Long L-P, Cao Z-L (2005) Anal Lett 38:1721–1734

    Article  CAS  Google Scholar 

  29. Schmidt A, Standfuβ-Gabisch C, Bilitewski U (1996) Biosens Bioelectron 11:1139–1145

    Article  CAS  Google Scholar 

  30. Choi HN, Kim MA, Lee W-Y (2005) Anal Chim Acta 537:179–187

    Article  CAS  Google Scholar 

  31. Lee W-Y, Kim S-R, Kim T-H, Lee KS, Shin M-C, Park J-K (2000) Anal Chim Acta 404:195–203

    Article  CAS  Google Scholar 

  32. Guiseppi-Elie A (2010) Biomaterials 31:2701–2716

    Article  CAS  Google Scholar 

  33. Kim D-H, Abidian M, Martin DC (2004) J Biomed Mater Res A 71A:577–585

    Article  CAS  Google Scholar 

  34. Abidian MR, Martin DC (2009) Adv Funct Mater 19:573–585

    Article  CAS  Google Scholar 

  35. Kim DH, Wiler JA, Anderson DJ, Kipke DR, Martin DC (2010) Acta Biomater 6:57–62

    Article  CAS  Google Scholar 

  36. Abu-Rabeah K, Polyak B, Ionescu RE, Cosnier S, Marks RS (2005) Biomacromolecules 6:3313–3318

    Article  CAS  Google Scholar 

  37. Abu-Rabeaha K, Marks RS (2009) Sensors Actuators B 136:516–522

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice D. Leca-Bouvier.

Additional information

Published in the topical collection Analytical Bioluminescence and Chemiluminescence with guest editors Elisa Michelini and Mara Mirasoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leca-Bouvier, B.D., Sassolas, A. & Blum, L.J. Polyluminol/hydrogel composites as new electrochemiluminescent-active sensing layers. Anal Bioanal Chem 406, 5657–5667 (2014). https://doi.org/10.1007/s00216-014-7945-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7945-y

Keywords

Navigation