Analytical and Bioanalytical Chemistry

, Volume 406, Issue 23, pp 5561–5571 | Cite as

Metal-nanoparticle-involved chemiluminescence and its applications in bioassays

  • Na Li
  • Danqing Liu
  • Hua CuiEmail author
Part of the following topical collections:
  1. Analytical Bioluminescence and Chemiluminescence


Chemiluminescence-based bioassays have become increasingly important in clinical, pharmaceutical, environmental, and food safety fields owing to their high sensitivity, wide linear range, and simple instrumentation. During the past decade, it has been found that metal nanoparticles can initiate various liquid-phase chemiluminescence reactions as catalysts, reductants, energy acceptors, and nanosized reaction platforms owing to their unique optical, catalytic, and surface properties and chemical reactivity, which are very important for chemiluminescence bioassays based on metal nanoparticles as nanoprobes or a nanointerface. In this article, we summarize recent progress in metal-nanoparticle-initiated liquid-phase chemiluminescence, including reaction systems, mechanisms, and their applications in chemiluminescence-based bioassays, especially for immunoassays, DNA assays, aptamer-based assays, high-performance liquid chromatography or capillary electrophoresis analysis, and flow injection analysis.


Comprehensive summary of metal nanoparticle (NP)-involved chemiluminescence (CL) systems and their applications. CE capillary electrophoresis, HPLC highperformance liquid chromatography


Metal nanoparticles Chemiluminescence Mechanism Bioassay 



Financial support of this research by the National Natural Science Foundation of the People’s Republic of China (grant nos. 21173201, 21075115, and 20625517) and the Overseas Outstanding Young Scientist Program of the China Academy of Sciences is gratefully acknowledged.


  1. 1.
    Trautz M (1905) Studies on chemiluminescence. Z Phys Chem 53:1Google Scholar
  2. 2.
    Albrecht HO (1928) Chemiluminescence of aminophthalic hydrazide. Z Phys Chem 136:321–330Google Scholar
  3. 3.
    Gundermann KD, McCapra F (1987) Chemiluminescence in organic chemistry. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Gamiz-Gracia L, Garcia-Campana AM, Huertas-Perez JF, Lara FJ (2009) Chemiluminescence detection in liquid chromatography: applications to clinical, pharmaceutical, environmental and food analysis—a review. Anal Chim Acta 640(1–2):7–28CrossRefGoogle Scholar
  5. 5.
    Zhao LX, Sun L, Chu XG (2009) Chemiluminescence immunoassay. Trends Anal Chem 28(4):404–415CrossRefGoogle Scholar
  6. 6.
    Fan AP, Cao ZJ, Li HA, Kai M, Lu JZ (2009) Chemiluminescence platforms in immunoassay and DNA analyses. Anal Sci 25(5):587–597CrossRefGoogle Scholar
  7. 7.
    Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105(17):3441–3452CrossRefGoogle Scholar
  8. 8.
    Brust M, Bethell D, Kiely CJ, Schiffrin DJ (1998) Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14(19):5425–5429CrossRefGoogle Scholar
  9. 9.
    Whetten RL, Shafigullin MN, Khoury JT, Schaaff TG, Vezmar I, Alvarez MM, Wilkinson A (1999) Crystal structures of molecular gold nanocrystal arrays. Acc Chem Res 32(5):397–406CrossRefGoogle Scholar
  10. 10.
    Adams RD, Captain B, Zhu L (2004) Platinum participation in the hydrogenation of phenylacetylene by Ru5(CO)15(C)[Pt(PBut 3)]. J Am Chem Soc 126(10):3042–3043CrossRefGoogle Scholar
  11. 11.
    Ung T, Liz-Marzan LM, Mulvaney P (1999) Redox catalysis using Ag@SiO2 colloids. J Phys Chem B 103(32):6770–6773CrossRefGoogle Scholar
  12. 12.
    Templeton AC, Wuelfing MP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33(1):27–36CrossRefGoogle Scholar
  13. 13.
    Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF (1998) Photoluminescence from nanosize gold clusters. J Chem Phys 1998(108):9137–9143CrossRefGoogle Scholar
  14. 14.
    Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings - homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348(6):609–679CrossRefGoogle Scholar
  15. 15.
    Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872CrossRefGoogle Scholar
  16. 16.
    Jana NR, Gearheart L, Obare SO, Murphy CJ (2002) Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18(3):922–927CrossRefGoogle Scholar
  17. 17.
    Chen SW, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280(5372):2098–2101CrossRefGoogle Scholar
  18. 18.
    Link S, Ei-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  19. 19.
    Huang T, Murray RW (2001) Visible luminescence of water-soluble monolayer-protected gold clusters. J Phys Chem B 105(50):12498–12502CrossRefGoogle Scholar
  20. 20.
    Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453CrossRefGoogle Scholar
  21. 21.
    Bigioni TP, Whetten RL, Dag O (2000) Near-infrared luminescence from small gold nanocrystals. J Phys Chem B 104(30):6983–6986CrossRefGoogle Scholar
  22. 22.
    Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley DF (1998) Photoluminescence from nanosize gold clusters. J Chem Phys 108(21):9137–9143CrossRefGoogle Scholar
  23. 23.
    Giokas DL, Vlessidis AG, Tsogas GZ, Evmiridis NP (2010) nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. Trends Anal Chem 29(10):1113–1126CrossRefGoogle Scholar
  24. 24.
    Li Q, Zhang L, Li J, Lu C (2011) Nanomaterial-amplified chemiluminescence systems and their applications in bioassays. Trends Anal Chem 30(2):401–413CrossRefGoogle Scholar
  25. 25.
    Su Y, Xie Y, Hou X, Lv Y (2014) Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Appl Spectrosc Rev 49(3):201–232CrossRefGoogle Scholar
  26. 26.
    Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77(10):3324–3329CrossRefGoogle Scholar
  27. 27.
    Wang Z, Hu J, Jin Y, Yao X, Li JH (2006) In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin Chem 52(10):1958–1961CrossRefGoogle Scholar
  28. 28.
    Li QQ, Liu F, Lu C, Lin JM (2011) Aminothiols sensing based on fluorosurfactant-mediated triangular gold nanoparticle-catalyzed luminol chemiluminescence. J Phys Chem C 115(22):10964–10970CrossRefGoogle Scholar
  29. 29.
    Abhijith KS, Ragavan KV, Thakur MS (2013) Gold nanoparticles enhanced chemiluminescence – a novel approach for sensitive determination of aflatoxin-B1. Anal Methods 5(18):4838–4845CrossRefGoogle Scholar
  30. 30.
    Chen H, Gao F, He R, Cui D (2007) Chemiluminescence of luminol catalyzed by silver nanoparticles. J Colloid Interface Sci 315(1):158–163CrossRefGoogle Scholar
  31. 31.
    Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A 193(2–3):89–96CrossRefGoogle Scholar
  32. 32.
    Li S, Tao S, Wang F, Hong J, Wei X (2010) Chemiluminescence reactions of luminol system catalyzed by nanoparticles of a gold/silver alloy. Microchim Acta 169(1–2):73–78CrossRefGoogle Scholar
  33. 33.
    Xu SL, Cui H (2007) Luminol chemiluminescence catalysed by colloidal platinum nanoparticles. Luminescence 22(2):77–87CrossRefGoogle Scholar
  34. 34.
    Gill R, Polsky R, Willner I (2006) Pt nanopartictes functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small 2(8–9):1037–1041CrossRefGoogle Scholar
  35. 35.
    Wang L, Yang P, Li Y, Chen H, Li M, Luo F (2007) A flow injection chemiluminescence method for the determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxide catalyzed by gold nanoparticles. Talanta 72(3):1066–1072CrossRefGoogle Scholar
  36. 36.
    Li Y, Yang P, Wang P, Wang L (2007) Development of a novel luminol chemiluminescent method catalyzed by gold nanoparticles for determination of estrogens. Anal Bioanal Chem 387(2):585–592CrossRefGoogle Scholar
  37. 37.
    Li ZP, Wang YC, Liu CH, Li YK (2005) Development of chemiluminescence detection of gold nanoparticles in biological conjugates for immunoassay. Anal Chim Acta 551(1–2):85–91CrossRefGoogle Scholar
  38. 38.
    Qi H, Li S, Liang L, Ling C, Gao Q, Zhang C (2011) Sensitive competitive flow injection chemiluminescence immunoassay for IgG using gold nanoparticle as label. Spectrochim Acta A 82(1):498–503CrossRefGoogle Scholar
  39. 39.
    Fan AP, Lau CW, Lu JZ (2005) Magnetic bead-based chemiluminescent metal immunoassay with a colloidal gold label. Anal Chem 77(10):3238–3242CrossRefGoogle Scholar
  40. 40.
    Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D Origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12(17):3150–315840CrossRefGoogle Scholar
  41. 41.
    Qi Y, Li B, Zhang Z (2009) Label-free and homogeneous DNA hybridization detection using gold nanoparticles-based chemiluminescence system. Biosens Bioelectron 24(12):3581–3586CrossRefGoogle Scholar
  42. 42.
    Islam MS, Kang SH (2011) Chemiluminescence detection of label-free C-reactive protein based on catalytic activity of gold nanoparticles. Talanta 84(3):752–758CrossRefGoogle Scholar
  43. 43.
    Li N, Guo J, Liu B, Yu Y, Cui H, Mao L, Lin Y (2009) Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence. Anal Chim Acta 645(1–2):48–55CrossRefGoogle Scholar
  44. 44.
    Li Q, Shang F, Lu C, Zheng Z, Lin JM (2011) Fluorosurfactant-prepared triangular gold nanoparticles as postcolumn chemiluminescence reagents for high-performance liquid chromatography assay of low molecular weight aminothiols in biological fluids. J Chromatogr A 1218(50):9064–9070CrossRefGoogle Scholar
  45. 45.
    Bai SL, Chen QS, Lu C, Lin JM (2013) Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta 768:96–101CrossRefGoogle Scholar
  46. 46.
    Zhang QL, Wu L, Lv C, Zhang XY (2012) A novel on-line gold nanoparticle-catalyzed luminol chemiluminescence detector for high-performance liquid chromatography. J Chromatogr A 1242:84–91CrossRefGoogle Scholar
  47. 47.
    Zhao S, Lan X, Liu YM (2009) Gold nanoparticle-enhanced capillary electrophoresis-chemiluminescence assay of trace uric acid. Electrophoresis 30(15):2676–2680CrossRefGoogle Scholar
  48. 48.
    Zhao S, Niu T, Song Y, Liu YM (2009) Gold nanoparticle-enhanced chemiluminescence detection for CE. Electrophoresis 30(6):1059–1065CrossRefGoogle Scholar
  49. 49.
    Duan C, Cui H, Zhang Z, Liu B, Guo J, Wang W (2007) Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111(12):4561–4566CrossRefGoogle Scholar
  50. 50.
    Koutsoulis NP, Giokas DL, Vlessidis AG, Tsogas GZ (2010) Alkaline earth metal effect on the size and color transition of citrate-capped gold nanoparticles and analytical implications in periodate-luminol chemiluminescence. Anal Chim Acta 669(1–2):45–52CrossRefGoogle Scholar
  51. 51.
    Cui H, Guo JZ, Li N, Liu LJ (2008) Gold nanoparticle triggered chemiluminescence between luminol and AgNO3. J Phys Chem C 112(30):11319–11323CrossRefGoogle Scholar
  52. 52.
    Li S, Sun H, Wang D, Hong J, Tao S, Yu H, Wang X, Wei X (2012) Enhanced chemiluminescence of the luminol-AgNO3 system by Ag nanoparticles. Luminescence 27(3):211–216CrossRefGoogle Scholar
  53. 53.
    Liu C, Li B (2011) Silver nanoparticle-initiated chemiluminescence reaction of luminol-AgNO3 and its analytical application. Anal Bioanal Chem 401(1):229–235CrossRefGoogle Scholar
  54. 54.
    Li N, Wang W, Tian D, Cui H (2010) pH-dependent catalytic properties of Pd-Ag nanoparticles in luminol chemiluminescence. Chem Commun 46(9):1520–1522CrossRefGoogle Scholar
  55. 55.
    Kamruzzaman M, Alam AM, Kim KM, Lee SH, Kim YH, Kabir ANMH, Kim GM, Trung DD (2013) Chemiluminescence microfluidic system of gold nanoparticles enhanced luminol-silver nitrate for the determination of vitamin B12. Biomed Microdevices 15(1):195–202CrossRefGoogle Scholar
  56. 56.
    Duan CF, Yu YQ, Cui H (2008) Gold nanoparticle-based immunoassay by using non-stripping chemiluminescence detection. Analyst 133(9):1250–1255CrossRefGoogle Scholar
  57. 57.
    Cai S, Xin L, Lau C, Lu J (2010) Highly sensitive non-stripping gold nanoparticles-based chemiluminescent detection of DNA hybridization coupled to magnetic beads. Analyst 135(3):615–620CrossRefGoogle Scholar
  58. 58.
    Sun Y, Cai S, Cao Z, Lau C, Lu J (2011) Aptameric system for the highly selective and ultrasensitive detection of protein in human serum based on non-stripping gold nanoparticles. Analyst 136(20):4144–4151CrossRefGoogle Scholar
  59. 59.
    Duan CF, Cui H (2009) Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol. Chem Commun 18:2574–2576Google Scholar
  60. 60.
    Gorman BA, Francis PS, Dunstan DE, Barnett NW (2007) Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence enhanced by silver nanoparticles. Chem Commun 4:395–397Google Scholar
  61. 61.
    Kamruzzaman M, Alam AM, Kim KM, Lee SH, Kim YH, Kim SH (2012) Silver nanoparticle-enhanced chemiluminescence method for determining naproxen based on Europium(III)-sensitized Ce(IV)-Na2S2O4 reaction. J Fluoresc 22(3):883–890CrossRefGoogle Scholar
  62. 62.
    Li SF, Zhang XM, Yao ZJ, Yu R, Huang F, Wei X-W (2009) Enhanced chemiluminescence of the rhodamine 6G-cerium(IV) system by Au-Ag alloy nanoparticles. J Phys Chem C 113(35):15586–15592CrossRefGoogle Scholar
  63. 63.
    Hassanzadeh J, Amjadi M, Manzoori JL, Sorouraddin MH (2013) Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application. Spectrochim Acta A 107:296–302CrossRefGoogle Scholar
  64. 64.
    Liang SX, Li H, Lin AM (2008) Reaction mechanism of surfactant-sensitized chemiluminescence of bis(2,4,6-trichlorophyenyl) oxalate and hydrogen peroxide induced by gold nanoparticles. Luminescence 23(6):381–385CrossRefGoogle Scholar
  65. 65.
    Lin JM, Liu M (2008) Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. J Phys Chem B 112(26):7850–7855CrossRefGoogle Scholar
  66. 66.
    Chen H, Li RB, Li HF, Lin JM (2012) Plasmon-assisted enhancement of the ultraweak chemiluminescence using Cu/Ni metal nanoparticles. J Phys Chem C 116(28):14796–14803CrossRefGoogle Scholar
  67. 67.
    Amjadi M, Manzoori JL, Hassanzadeh J, Sorouraddin MH (2013) Permanganate-bromide-silver nanoparticles as a new chemiluminescence system and its application to captopril determination. Talanta 115:600–605CrossRefGoogle Scholar
  68. 68.
    Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265CrossRefGoogle Scholar
  69. 69.
    Zhang ZF, Cui H, Shi MJ (2006) Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate. Phys Chem Chem Phys 8:1017–1021CrossRefGoogle Scholar
  70. 70.
    Henglein A (1993) Physicochemical properties of small metal particles in solution - microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97(21):5457–5471CrossRefGoogle Scholar
  71. 71.
    Guo JZ, Cui H (2007) Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates. J Phys Chem C 111(33):12254–12259CrossRefGoogle Scholar
  72. 72.
    Li N, Gu J, Cui H (2010) Luminol chemiluminescence induced by silver nanoparticles in the presence of nucleophiles and Cu2+. J Photochem Photobiol A 215(2–3):185–190CrossRefGoogle Scholar
  73. 73.
    Cui H, Zhang ZF, Shi MJ, Xu Y, Wu YL (2005) Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide. Anal Chem 77(19):6402–6406CrossRefGoogle Scholar
  74. 74.
    Du J, Wang Y, Zhang W (2012) Label-free, non-derivatization CRET detection platform for 6-mercaptopurine based on the distance-dependent optical properties of gold nanoparticles. Chem Eur J 18(27):8540–8546CrossRefGoogle Scholar
  75. 75.
    Cui H, Zhang ZF, Shi MJ (2005) Chemiluminescent reactions induced by gold nanoparticles. J Phys Chem B 109(8):3099–3103CrossRefGoogle Scholar
  76. 76.
    Syed LU, Swisher LZ, Huff H, Rochford C, Wang FL, Liu JW, Wu J, Richter M, Balivada S, Troyer D, Li J (2013) Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-based chemical analyses. Analyst 138(19):5600–5609CrossRefGoogle Scholar
  77. 77.
    Zhang HL, Liu MX, Huang GM, Yu YQ, Shen W, Cui H (2013) Highly chemiluminescent gold nanopopcorns functionalized by N-(aminobutyl)-N-(ethylisoluminol) with lipoic acid as a co-stabilizing reagent. J Mater Chem B 1(7):970–977CrossRefGoogle Scholar
  78. 78.
    Zhang LJ, Lu BQ, Lu C (2013) Chemiluminescence sensing of aminothiols in biological fluids using peroxymonocarbonate-prepared networked gold nanoparticle. Analyst 138(3):850–855CrossRefGoogle Scholar
  79. 79.
    Zhang S, Zhong H, Ding C (2008) Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using signal DNA probe modified with Au and CuS nanoparticles. Anal Chem 80(19):7206–7212CrossRefGoogle Scholar
  80. 80.
    Haghighi B, Bozorgzadeh S (2010) Flow injection chemiluminescence determination of isoniazid using luminol and silver nanoparticles. Microchem J 95(2):192–197CrossRefGoogle Scholar
  81. 81.
    Li Y, Li Y, Yang Y (2011) Flow-injection chemiluminescence determination of lisinopril using luminol-KMnO4 reaction catalyzed by silver nanoparticles. Appl Spectrosc 65(4):376–381CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChengdu University of TechnologyChengduChina

Personalised recommendations