Analytical and Bioanalytical Chemistry

, Volume 406, Issue 20, pp 4965–4986 | Cite as

Optimization of capillary isotachophoretic method for determination of major macroelements in blue honeysuckle berries (Lonicera caerulea L.) and related products

  • Tomasz ChmielEmail author
  • Dionna Abogado
  • Waldemar Wardencki
Research Paper


A reliable and repeatable isotachophoretic method for the simultaneous determination of K+, Na+, Ca2+, Mg2+, and ammonium in berries of different blue honeysuckle cultivars was developed. The usefulness of the complex-forming equilibria in determining the cations mentioned above was studied. The addition of 7.5 mM 18-crown-6 and 2 mM α-hydroxyisobutyric acid to sulfuric acid enhanced the separation capacity of the leading electrolyte. The terminating electrolyte of 10 mM TRIS buffered to pH 4.30 was chosen as most appropriate for these studies. An ultrasound-assisted procedure for the extraction of macroelements from dried fruit of Lonicera caerulea L. was investigated using response surface methodology. The Box-Behnken experimental design showed the optimal extraction conditions as follows: temperature of 36 °C, extraction time of 42.3 min and solid-to-liquid ratio of 1:800 v/w. Detection limits for the method ranged from 0.030 to 0.097 mg/l with precision expressed by RSD ranging from 1.4 % for Mg to 4.4 % for Na. The results showed that blue honeysuckle berries are a good source of potassium, from 199 to 402 mg/100 g FW, especially ‘Zielona’ and ‘Zojka’ cultivars. The average content of other analytes in these berries was 5.2 mg Na, 24.8 mg Ca, 7.5 mg Mg and 52.0 mg ammonium per 100 g FW. The berry products contained lower amounts of minerals especially Mg and K. However, a glass of freshly squeezed juice can provide almost 20 % of the RDI of potassium. The results obtained using both the developed isotachophoretic method and ion chromatographic procedure did not differ significantly.


Electroanalytical methods Capillary isotachophoresis Ion chromatography Response surface methodology Macroelements Blue honeysuckle berry 



The authors would like to acknowledge the financial support provided by the Polish Ministry of Science and Higher Education (grant no. N N312 344339) and European Social Fund through project no. POKL.04.01.01-00-368/09. We wish to thank Dr Marian Koval from Villa Labeco for guidance and technical assistance. We are also grateful to Dr Agnieszka Bartoszek for providing some berry cultivars for this study.


  1. 1.
    Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods Hum Nutr 65:299–308CrossRefGoogle Scholar
  2. 2.
    Yildiz Ö, Eyduran SP (2009) Functional components of berry fruits and their usage in food technologies. Afr J Agric Res 4:422–426Google Scholar
  3. 3.
    Ekholm P, Reinivuo H, Mattila P et al (2007) Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland. J Food Compos Anal 20:487–495CrossRefGoogle Scholar
  4. 4.
    Houston MC, Harper KJ (2008) Potassium, magnesium, and calcium: their role in both the cause and treatment of hypertension. J Clin Hypertens 10:3–11CrossRefGoogle Scholar
  5. 5.
    Kang I, Kim YS, Kim C (2007) Mineral deficiency in patients who have undergone gastrectomy. Nutrition 23:318–322CrossRefGoogle Scholar
  6. 6.
    Gałkowska D, Fortuna T, Prochwicz-Zagórska W (2010) Physicochemical quality of selected strawberry jams with fructose. Potravinarstvo 4:22–24Google Scholar
  7. 7.
    Konić-Ristić A, Šavikin K, Zdunić G et al (2011) Biological activity and chemical composition of different berry juices. Food Chem 125:1412–1417CrossRefGoogle Scholar
  8. 8.
    Ochmian I, Grajkowski J, Mikiciuk G et al (2009) Mineral composition of high blueberry leaves and fruits depending on substrate type used for cultivation. J Elem 14:509–516Google Scholar
  9. 9.
    Caland LB, Silveira ELC, Tubino M (2012) Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography. Anal Chim Acta 718:116–120CrossRefGoogle Scholar
  10. 10.
    Trifirò A, Saccani G, Zanotti A et al (1996) Determination of cations in fruit juices and purees by ion chromatography. J Chromatogr A 739:175–181CrossRefGoogle Scholar
  11. 11.
    Özcan MM, Hacıseferoğulları H (2007) The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. J Food Eng 78:1022–1028CrossRefGoogle Scholar
  12. 12.
    Plessi M, Bertelli D, Rastelli G, Monzani A (1998) Fruits of Ribes, Rubus, Vaccinium and Prunus genus. Metal contents and genome. Fresenius J Anal Chem 361:353–354CrossRefGoogle Scholar
  13. 13.
    Plessi M, Bertelli D, Albasini A (2007) Distribution of metals and phenolic compounds as a criterion to evaluate variety of berries and related jams. Food Chem 100:419–427CrossRefGoogle Scholar
  14. 14.
    Kubáň P, Kubáň P, Kubáň V (2002) Simultaneous determination of inorganic and organic anions, alkali, alkaline earth and transition metal cations by capillary electrophoresis with contactless conductometric detection. Electrophoresis 23:3725–3734CrossRefGoogle Scholar
  15. 15.
    Suárez-Luque S, Mato I, Huidobro JF, Simal-Lozano J (2007) Determination of major metal cations in milk by capillary zone electrophoresis. Int Dairy J 17:896–901CrossRefGoogle Scholar
  16. 16.
    Kvasnička F, Parkin G, Harvey C (1993) Capillary isotachophoresis as a new tool in sugar factory analysis. Int Sugar J 95:451–458Google Scholar
  17. 17.
    Blatný P, Kvasnička F (1999) Application of capillary isotachophoresis and capillary zone electrophoresis to the determination of inorganic ions in food and feed samples. J Chromatogr A 834:419–431CrossRefGoogle Scholar
  18. 18.
    Gordon A, Gil Cruz AP, Corrêa Cabral LM et al (2012) Chemical characterization and evaluation of antioxidant properties of Açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chem 133:256–263CrossRefGoogle Scholar
  19. 19.
    Jurikova T, Rop O, Mlcek J et al (2012) Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological effects. Molecules 17:61–79CrossRefGoogle Scholar
  20. 20.
    Kusznierewicz B, Piekarska A, Mrugalska B et al (2012) Phenolic composition and antioxidant properties of Polish blue-berried honeysuckle genotypes by HPLC-DAD-MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. J Agric Food Chem 60:1755–1763CrossRefGoogle Scholar
  21. 21.
    Palíková I, Heinrich J, Bednář P et al (2008) Constituents and antimicrobial properties of blue honeysuckle: a novel source for phenolic antioxidants. J Agric Food Chem 56:11883–11889CrossRefGoogle Scholar
  22. 22.
    Ochmian I, Skupień K, Grajkowski J et al (2012) Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not Bot Hort Agrobot Cluj 40:155–162Google Scholar
  23. 23.
    Svarcova I, Heinrich J, Valentova K (2007) Berry fruits as a source of biologically active compounds: the case of Lonicera caerulea. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151:163–174CrossRefGoogle Scholar
  24. 24.
    Žilinskaitė S, Naugžemys D, Radaitienė D, Žvingila D (2007) Investigation of blue-berried honeysuckle lines and cultivars in Vilnius University Botanical Garden collection. Sodinink ir Darzinink 26:47–56Google Scholar
  25. 25.
    Kamzolova OI, Pigul ML, Lipskaia SL (2006) Biochimiczeskaia ocenka sortov żimiloscti siniei v usloviach Belarusi. Plodovodstvo 18:110–114Google Scholar
  26. 26.
    Ochmian I, Grajkowski J, Skupień K (2008) Field performance, fruit chemical composition and firmness under cold storage and simulated “shelf-life” conditions of three blue honeysuckle cultigens (Lonicera caerulea). J Fruit Ornam Plant Res 16:83–91Google Scholar
  27. 27.
    Gruia MI, Oprea E, Gruia I et al (2008) The antioxidant response induced by Lonicera caerulaea berry extracts in animals bearing experimental solid tumors. Molecules 13:1195–1206CrossRefGoogle Scholar
  28. 28.
    Jin X-H, Ohgami K, Shiratori K et al (2006) Effects of blue honeysuckle (Lonicera caerulea L.) extract on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res 82:860–867CrossRefGoogle Scholar
  29. 29.
    Palíková I, Valentová K, Oborná I, Ulrichová J (2009) Protectivity of blue honeysuckle extract against oxidative human endothelial cells and rat hepatocyte damage. J Agric Food Chem 57:6584–6589CrossRefGoogle Scholar
  30. 30.
    Kaniansky D, Zelenský I, Valášková I et al (1990) Isotachophoretic separation of alkali and alkaline earth metal cations in water-polyethylene glycol mixtures. J Chromatogr A 502:143–153CrossRefGoogle Scholar
  31. 31.
    Blatný P, Kvasnička F, Loučka R, Šafářová H (1997) Determination of ammonium, calcium, magnesium, and potassium in silage by capillary isotachophoresis. J Agric Food Chem 45:3554–3558CrossRefGoogle Scholar
  32. 32.
    Prest JE, Beardah MS, Baldock SJ et al (2010) Determination of the potassium content of explosive residues using miniaturised isotachophoresis. Electrophoresis 31:3775–3782CrossRefGoogle Scholar
  33. 33.
    Stover FS (1984) Isotachophoresis of metal-neutral ligand complexes: 18-crown-6 ether complexes with alkali metals. J Chromatogr A 298:203–210CrossRefGoogle Scholar
  34. 34.
    Prest JE, Fielden PR, Qi Y (2012) Separation of alkali metals using isotachophoresis with cryptand 222 as a leading electrolyte additive. J Chromatogr A 1260:239–243CrossRefGoogle Scholar
  35. 35.
    Grobelny J, Sokół M, Jedliński ZJ (1991) Complexation of potassium cations by tetraglyme and 18-crown-6 as evidenced by 39 K NMR spectroscopy. Magn Reson Chem 29:679–680CrossRefGoogle Scholar
  36. 36.
    Haidekker A, Huber CG (2001) Ion chromatography on chelating stationary phases: separation of alkali metals. J Chromatogr A 921:217–226CrossRefGoogle Scholar
  37. 37.
    Arena G, Musumeci S, Purrello R, Sammartano S (1983) Calcium- and magnesium-EDTA complexes. Stability constants and their dependence on temperature and ionic strength. Thermochim Acta 61:129–138CrossRefGoogle Scholar
  38. 38.
    Portanova R, Lajunen LHJ, Tolazzi M, Piispanen J (2003) Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes. Part II. Aliphatic 2-hydroxycarboxylic acids. Pure Appl Chem 75:495–540CrossRefGoogle Scholar
  39. 39.
    Lin T-I, Lee Y-H, Chen Y-C (1993) Capillary electrophoretic analysis of inorganic cations: role of complexing agent and buffer pH. J Chromatogr A 654:167–176CrossRefGoogle Scholar
  40. 40.
    Yang Q, Smeyers-Verbeke J, Wu W et al (1994) Simultaneous separation of ammonium and alkali, alkaline earth and transition metal ions in aqueous-organic media by capillary ion analysis. J Chromatogr A 688:339–349CrossRefGoogle Scholar
  41. 41.
    Shakulashvili N, Faller T, Engelhardt H (2000) Simultaneous determination of alkali, alkaline earth and transition metal ions by capillary electrophoresis with indirect UV detection. J Chromatogr A 895:205–212CrossRefGoogle Scholar
  42. 42.
    Xu X, Gao Y, Liu G et al (2008) Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophaë thamnoides L.) oil using response surface methodology. LWT- Food Sci Technol 41:1223–1231CrossRefGoogle Scholar
  43. 43.
    Huber L (1998) Validation and qualification in analytical laboratory. Interpharm, Englewood, CO, USAGoogle Scholar
  44. 44. Accessed 11 Dec 2013.
  45. 45.
    USDA National Nutrient Database (2013) Accessed 20 Dec 2013.
  46. 46.
    Wen P-F, Chen J-Y, Wan S-B et al (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regul 55:1–10CrossRefGoogle Scholar
  47. 47.
    Heeb A, Lundegårdh B, Ericsson T, Savage GP (2005) Effects of nitrate-, ammonium-, and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J Plant Nutr Soil Sci 168:123–129CrossRefGoogle Scholar
  48. 48.
    He FJ, Li J, MacGregor GA (2013) Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 346:1–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tomasz Chmiel
    • 1
    Email author
  • Dionna Abogado
    • 1
  • Waldemar Wardencki
    • 1
  1. 1.Department of Analytical Chemistry, Chemical FacultyGdansk University of TechnologyGdańskPoland

Personalised recommendations