Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 20, pp 5977–5986 | Cite as

Effects of an iron-based fuel-borne catalyst and a diesel particle filter on exhaust toxicity in lung cells in vitro

  • Sandro Steiner
  • Jan Czerwinski
  • Pierre Comte
  • Norbert V. Heeb
  • Andreas Mayer
  • Alke Petri-Fink
  • Barbara Rothen-Rutishauser
Research Paper
Part of the following topical collections:
  1. Aerosols and Health

Abstract

Metal-containing fuel additives catalyzing soot combustion in diesel particle filters are used in a widespread manner, and with the growing popularity of diesel vehicles, their application is expected to increase in the near future. Detailed investigation into how such additives affect exhaust toxicity is therefore necessary and has to be performed before epidemiological evidence points towards adverse effects of their application. The present study investigates how the addition of an iron-based fuel additive (Satacen®3, 40 ppm Fe) to low-sulfur diesel affects the in vitro cytotoxic, oxidative, (pro-)inflammatory, and mutagenic activity of the exhaust of a passenger car operated under constant, low-load conditions by exposing a three-dimensional model of the human airway epithelium to complete exhaust at the air–liquid interface. We could show that the use of the iron catalyst without and with filter technology has positive as well as negative effects on exhaust toxicity compared to exhaust with no additives: it decreases the oxidative and, compared to a non-catalyzed diesel particle filter, the mutagenic potential of diesel exhaust, but increases (pro-)inflammatory effects. The presence of a diesel particle filter also influences the impact of Satacen®3 on exhaust toxicity, and the proper choice of the filter type to be used is of importance with regards to exhaust toxicity.

Keywords

Exhaust exposures Iron catalyst Diesel particle filter 3D lung cell model Air–liquid interface 

Notes

Acknowledgments

The authors would like to acknowledge the financial support of the Swiss Federal Office for the Environment, Erdölvereinigung EV and VSS lubes, as well as the Adolphe Merkle Foundation, and furthermore, the Bern University of Applied Sciences, the Institute of Aerosol and Sensor Technology, Northwestern Switzerland, and the University of Rouen for technical assistance. We would also like to thank Dr. Gruenert (University of California, San Francisco) for providing the 16HBE14o- cell line.

Conflict of interest

Andreas Mayer is the owner and general manager of “TTM Andreas Mayer,” Switzerland, an emission consulting company. As all the other authors, however, he declares to have no conflicts of interest.

Supplementary material

216_2014_7878_MOESM1_ESM.pdf (308 kb)
ESM 1 (PDF 307 kb)

References

  1. 1.
    van Setten BAAL, Makkee M, Moulijn JA (2001) Science and technology of catalytic diesel particulate filters. Catal Rev 43(4):489–564. doi: 10.1081/Cr-120001810 CrossRefGoogle Scholar
  2. 2.
    Ghio AJ, Smith CB, Madden MC (2012) Diesel exhaust particles and airway inflammation. Curr Opin Pulm Med 18(2):144–150. doi: 10.1097/Mcp.0b013e32834f0e2a CrossRefGoogle Scholar
  3. 3.
    Ghio AJ, Sobus JR, Pleil JD, Madden MC (2012) Controlled human exposures to diesel exhaust. Swiss Med Wkly 142. doi: 10.4414/smw.2012.13597
  4. 4.
    Schwarze PE, Totlandsdal AI, Lag M, Refsnes M, Holme JA, Ovrevik J (2013) Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. Biomed Res Int 2013:1–13. doi: 10.1155/2013/685142 CrossRefGoogle Scholar
  5. 5.
    Adler J (2005) Ceramic diesel particulate filters. Int J Appl Ceram Technol 2(6):429–439CrossRefGoogle Scholar
  6. 6.
    Bensaid S, Marchisio DL, Russo N, Fino D (2009) Experimental investigation of soot deposition in diesel particulate filters. Catal Today 147:S295–S300. doi: 10.1016/j.cattod.2009.07.039 CrossRefGoogle Scholar
  7. 7.
    Mayer A, Czerwinski J, Wichser A, Ulrich A, Kasper M, Mooney J (2010) Metal-oxide particles in combustion engine exhaust. SAE Technical Papers 2010-01-0792Google Scholar
  8. 8.
    Johnson T (2008) Diesel engine emissions and their control an overview. Platin Met Rev 52(1):23–37. doi: 10.1595/147106708x248750 CrossRefGoogle Scholar
  9. 9.
    Setiabudi A, Chen JL, Mul G, Makkee M, Moulijn JA (2004) CeO2 catalysed soot oxidation—the role of active oxygen to accelerate the oxidation conversion. Appl Catal B Environ 51(1):9–19. doi: 10.1016/j.apcath.2004.01.005 CrossRefGoogle Scholar
  10. 10.
    Liati A, Eggenschwiler PD (2010) Characterization of particulate matter deposited in diesel particulate filters: visual and analytical approach in macro-, micro- and nano-scales. Combust Flame 157(9):1658–1670. doi: 10.1016/j.combustflame.2010.02.015 CrossRefGoogle Scholar
  11. 11.
    Okuda T, Schauer JJ, Olson MR, Shafer MM, Rutter AP, Walz KA, Morschauser PA (2009) Effects of a platinum-cerium bimetallic fuel additive on the chemical composition of diesel engine exhaust particles. Energy Fuel 23:4974–4980. doi: 10.1021/Ef900370v CrossRefGoogle Scholar
  12. 12.
    Song JH, Wang JG, Boehman AL (2006) The role of fuel-borne catalyst in diesel particulate oxidation behavior. Combust Flame 146(1–2):73–84. doi: 10.1016/j.combustflame.2006.03.012 CrossRefGoogle Scholar
  13. 13.
    Jung HJ, Kittelson DB, Zachariah MR (2005) The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust Flame 142(3):276–288. doi: 10.1016/j.combustflame.2004.11.015 CrossRefGoogle Scholar
  14. 14.
    Skillas G, Qian Z, Baltensperger U, Matter U, Burtscher H (2000) The influence of additives on the size distribution and composition of particles produced by diesel engines. Combust Sci Technol 154:259–273. doi: 10.1080/00102200008947279 CrossRefGoogle Scholar
  15. 15.
    Heeb NV, Schmid P, Kohler M, Gujer E, Zennegg M, Wenger D, Wichser A, Ulrich A, Gfeller U, Honegger P, Zeyer K, Emmenegger L, Petermann JL, Czerwinski J, Mosimann T, Kasper M, Mayer A (2008) Secondary effects of catalytic diesel particulate filters: conversion of PAHs versus formation of Nitro-PAHs. Environ Sci Technol 42(10):3773–3779. doi: 10.1021/Es7026949 CrossRefGoogle Scholar
  16. 16.
    Heeb NV, Schmid P, Kohler M, Gujer E, Zennegg M, Wenger D, Wichser A, Ulrich A, Gfeller U, Honegger P, Zeyer K, Emmenegger L, Petermann JL, Czerwinski J, Mosimann T, Kasper M, Mayer A (2010) Impact of low- and high-oxidation diesel particulate filters on genotoxic exhaust constituents. Environ Sci Technol 44(3):1078–1084. doi: 10.1021/Es9019222 CrossRefGoogle Scholar
  17. 17.
    Heeb NV, Zennegg M, Haag R, Wichser A, Schmid P, Seiler C, Ulrich A, Honegger P, Zeyer K, Emmenegger L, Bonsack P, Zimmerli Y, Czerwinski J, Kasper M, Mayer A (2013) PCDD/F formation in an iron/potassium-catalyzed diesel particle filter. Environ Sci Technol 47(12):6510–6517. doi: 10.1021/es400760h Google Scholar
  18. 18.
    Shi XC, Keane MJ, Ong T, Li SQ, Bugarski AB (2010) Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments. J Toxicol Environ Health A 73(19):1314–1324. doi: 10.1080/15287394.2010.485030 CrossRefGoogle Scholar
  19. 19.
    Wenger D, Gerecke AC, Heeb NV, Zennegg M, Kohler M, Naegeli H, Zenobi R (2008a) Secondary effects of catalytic diesel particulate filters: reduced aryl hydrocarbon receptor-mediated activity of the exhaust. Environ Sci Technol 42(8):2992–2998. doi: 10.1021/Es071827x CrossRefGoogle Scholar
  20. 20.
    Wenger D, Gerecke AC, Heeb NV, Naegeli H, Zenobi R (2008b) Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust. Anal Bioanal Chem 390(8):2021–2029. doi: 10.1007/s00216-008-1872-8 CrossRefGoogle Scholar
  21. 21.
    Steiner S, Comte P, Czerwinski J, Muller L, Heeb NV, Mayer A, Fink A, Rothen-Rutishauser B (2013) Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter. Atmos Environ 81:117–124CrossRefGoogle Scholar
  22. 22.
    Blank F, Rothen-Rutishauser B, Gehr P (2007) Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am J Respir Cell Mol 36(6):669–677. doi: 10.1165/rcmb.2006-0234OC CrossRefGoogle Scholar
  23. 23.
    Morin JP, Hasson V, Fall M, Papaioanou E, Preterre D, Gouriou F, Keravec V, Konstandopoulos A, Dionnet F (2008) Prevalidation of in vitro continuous flow exposure systems as alternatives to in vivo inhalation safety evaluation experimentations: outcome from MAAPHRI-PCRD5 research program. Exp Toxicol Pathol 60(2–3):195–205. doi: 10.1016/j.etp.2008.01.007 CrossRefGoogle Scholar
  24. 24.
    Muller L, Comte P, Czerwinski J, Kasper M, Mayer ACR, Gehr P, Burtscher H, Morin JP, Konstandopoulos A, Rothen-Rutishauser B (2010) New exposure system to evaluate the toxicity of (Scooter) exhaust emissions in lung cells in vitro. Environ Sci Technol 44(7):2632–2638. doi: 10.1021/Es903146g CrossRefGoogle Scholar
  25. 25.
    Steiner S, Czerwinski J, Comte P, Popovicheva OB, Kireeva E, Muller L, Heeb N, Mayer A, Petri-Fink A, Rothen-Rutishauser B (2013) Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro. Atmos Environ 81:380–388CrossRefGoogle Scholar
  26. 26.
    Steiner S, Heeb NV, Czerwinski J, Comte P, Mayer A, Petri-Fink A, Rothen-Rutishauser B (2014) Test-methods on the test-bench: a comparison of complete exhaust and exhaust particle extracts for genotoxicity/mutagenicity assessment. Environ Sci Technol. doi: 10.1021/es4056033 Google Scholar
  27. 27.
    Steiner S, Mueller L, Popovicheva OB, Raemy DO, Czerwinski J, Comte P, Mayer A, Gehr P, Rothen-Rutishauser B, Clift MJD (2012) Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure. Toxicol Lett 214(2):218–225. doi: 10.1016/j.toxlet.2012.08.026 CrossRefGoogle Scholar
  28. 28.
    Muller L, Comte P, Czerwinski J, Kasper M, Mayer ACR, Schmid A, Rosinus L, Clift MJD, Steiner S, Gehr P, Rothen-Rutishauser B (2012) Investigating the potential for different scooter and car exhaust emissions to cause cytotoxic and (pro-)inflammatory responses to a 3D in vitro model of the human epithelial airway. Toxicol Environ Chem 94(1):164–180. doi: 10.1080/02772248.2011.632509 CrossRefGoogle Scholar
  29. 29.
    Bunger J, Krahl J, Franke HU, Munack A, Hallier E (1998) Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel. Mutat Res Genet Toxicol Environ 415(1–2):13–23CrossRefGoogle Scholar
  30. 30.
    Miller A, Ahlstrand G, Kittelson D, Zachariah M (2007) The fate of metal (Fe) during diesel combustion: morphology, chemistry, and formation pathways of nanoparticles. Combust Flame 149(1–2):129–143. doi: 10.1016/j.combustflame.2006.12.005 CrossRefGoogle Scholar
  31. 31.
    Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10. doi: 10.1186/1743-8977-2-10 CrossRefGoogle Scholar
  32. 32.
    Zhang HY, Ji ZX, Xia T, Meng H, Low-Kam C, Liu R, Pokhrel S, Lin SJ, Wang X, Liao YP, Wang MY, Li LJ, Rallo R, Damoiseaux R, Telesca D, Madler L, Cohen Y, Zink JI, Nel AE (2012) Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6(5):4349–4368. doi: 10.1021/Nn3010087 CrossRefGoogle Scholar
  33. 33.
    Podechard N, Lecureur V, Le Ferrec E, Guenon I, Sparfel L, Gilot D, Gordon JR, Lagente V, Fardel O (2008) Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicol Lett 177(2):130–137. doi: 10.1016/j.toxlet.2008.01.006 CrossRefGoogle Scholar
  34. 34.
    Umbuzeiro GA, Franco A, Martins MH, Kummrow F, Carvalho L, Schmeiser HH, Leykauf J, Stiborova M, Claxton LD (2008) Mutagenicity and DNA adduct formation of PAH, nitro-PAH, and oxy-PAH fractions of atmospheric particulate matter from Sao Paulo, Brazil. Mutat Res Genet Toxicol Environ 652(1):72–80. doi: 10.1016/j.mrgentox.2007.12.007 CrossRefGoogle Scholar
  35. 35.
    McGregor DB, Partensky C, Wilbourn J, Rice JM (1998) An IARC evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environ Health Perspect 106:755–760. doi: 10.2307/3433830 CrossRefGoogle Scholar
  36. 36.
    Ratcliff MA, Dane AJ, Williams A, Ireland J, Luecke J, McCormick RL, Voorhees KJ (2010) Diesel particle filter and fuel effects on heavy-duty diesel engine emissions. Environ Sci Technol 44(21):8343–8349. doi: 10.1021/es1008032 CrossRefGoogle Scholar
  37. 37.
    Lucking AJ, Lundback M, Barath SL, Mills NL, Sidhu MK, Langrish JP, Boon NA, Pourazar J, Badimon JJ, Gerlofs-Nijland ME, Cassee FR, Boman C, Donaldson K, Sandstrom T, Newby DE, Blomberg A (2011) Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123(16):1721–U1766. doi: 10.1161/Circulationaha.110.987263 CrossRefGoogle Scholar
  38. 38.
    Popovicheva OB, Kireeva E, Steiner S, Rothen-Rutishauser B, Persiantseva NM, Timofeev MA, Shonija NK, Comte P, Czerwinski J (2014) Microstructure and chemical composition of diesel and biodiesel particle exhaust. Aerosol Air Qual Res. doi: 10.4209/aaqr.2013.11.0336 Google Scholar
  39. 39.
    Westphal GA, Krahl J, Munack A, Rusche Y, Schroder O, Hallier E, Bruning T, Bunger J (2012) Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase. Environ Sci Technol 46(11):6417–6424. doi: 10.1021/Es300399e CrossRefGoogle Scholar
  40. 40.
    McDonald JD, Campen MJ, Harrod KS, Seagrave J, Seilkop SK, Mauderly JL (2011) Engine-operating load influences diesel exhaust composition and cardiopulmonary and immune responses. Environ Health Perspect 119(8):1136–1141. doi: 10.1289/Ehp.1003101 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sandro Steiner
    • 1
  • Jan Czerwinski
    • 2
  • Pierre Comte
    • 2
  • Norbert V. Heeb
    • 3
  • Andreas Mayer
    • 4
  • Alke Petri-Fink
    • 1
  • Barbara Rothen-Rutishauser
    • 1
    • 5
  1. 1.Adolphe Merkle InstituteUniversity of FribourgFribourgSwitzerland
  2. 2.Laboratory for IC-Engines and Exhaust Gas ControlBern University of Applied SciencesNidauSwitzerland
  3. 3.EMPA, Swiss Federal Laboratories for Materials Testing and ResearchDubendorfSwitzerland
  4. 4.TTM, Technik Thermische MaschinenNiederrohrdorfSwitzerland
  5. 5.Respiratory MedicineBern University HospitalBernSwitzerland

Personalised recommendations