Zoom-TOFMS: addition of a constant-momentum-acceleration “zoom” mode to time-of-flight mass spectrometry

Abstract

In this study, we demonstrate the performance of a new mass spectrometry concept called zoom time-of-flight mass spectrometry (zoom-TOFMS). In our zoom-TOFMS instrument, we combine two complementary types of TOFMS: conventional, constant-energy acceleration (CEA) TOFMS and constant-momentum acceleration (CMA) TOFMS to provide complete mass-spectral coverage as well as enhanced resolution and duty factor for a narrow, targeted mass region, respectively. Alternation between CEA- and CMA-TOFMS requires only that electrostatic instrument settings (i.e., reflectron and ion optics) and ion acceleration conditions be changed. The prototype zoom-TOFMS instrument has orthogonal-acceleration geometry, a total field-free distance of 43 cm, and a direct-current glow-discharge ionization source. Experimental results demonstrate that the CMA-TOFMS “zoom” mode offers resolution enhancement of 1.6 times over single-stage acceleration CEA-TOFMS. For the atomic mass range studied here, the maximum resolving power at full-width half-maximum observed for CEA-TOFMS was 1,610 and for CMA-TOFMS the maximum was 2,550. No difference in signal-to-noise (S/N) ratio was observed between the operating modes of zoom-TOFMS when both were operated at equivalent repetition rates. For a 10-kHz repetition rate, S/N values for CEA-TOFMS varied from 45 to 990 and from 67 to 10,000 for CMA-TOFMS. This resolution improvement is the result of a linear TOF-to-mass scale and the energy-focusing capability of CMA-TOFMS. Use of CMA also allows ions outside a given m/z range to be rejected by simple ion-energy barriers to provide a substantial improvement in duty factor.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Stephens WE (1946) Proceedings of the American Physical Society. Phys Rev 69(11–12):674. doi:10.1103/PhysRev.69.674.2

    Google Scholar 

  2. 2.

    Cameron AE, Eggers JDF (1948) An Ion “Velocitron”. Rev Sci Instrum 19(9):605–607. doi:10.1063/1.1741336

    CAS  Article  Google Scholar 

  3. 3.

    Xian F, Hendrickson CL, Marshall AG (2012) High resolution mass spectrometry. Anal Chem 84(2):708–719. doi:10.1021/ac203191t

    CAS  Article  Google Scholar 

  4. 4.

    Gross JH (2004) Mass Spectrometry: A Textbook. Springer, Leipzig, Germany

    Google Scholar 

  5. 5.

    Ioanoviciu D (2010) The spiral main path electric deflector as a time-of-flight mass analyzer. Int J Mass Spectrom 290(2–3):145–147. doi:10.1039/A607861C

    CAS  Article  Google Scholar 

  6. 6.

    Satoh T, Sato T, Tamura J (2007) Development of a high-performance MALDI-TOF mass spectrometer utilizing a spiral ion trajectory. J Am Soc Mass Spectrom 18(7):1318–1323. doi:10.1016/j.jasms.2007.04.010

    CAS  Article  Google Scholar 

  7. 7.

    Toyoda M, Okumura D, Ishihara M, Katakuse I (2003) Multi-turn time-of-flight mass spectrometers with electrostatic sectors. J Mass Spectrom 38(11):1125–1142. doi:10.1002/jms.546

    CAS  Article  Google Scholar 

  8. 8.

    Klitzke CF, Corilo YE, Siek K, Binkley J, Patrick J, Eberlin MN (2012) Petroleomics by ultrahigh-resolution time-of-flight mass spectrometry. Energy Fuel 26(9):5787–5794. doi:10.1021/ef300961c

    CAS  Article  Google Scholar 

  9. 9.

    Arteav V, Mitchell JC, Verentchikov A, Yavor M (2008) Multi-reflecting time-of-flight mass spectrometer and method of use. United States Patent US7385187 B2

  10. 10.

    Hazama H, Aoki J, Nagao H, Suzuki R, Tashima T, Fujii K-i, Masuda K, Awazu K, Toyoda M, Naito Y (2008) Construction of a novel stigmatic MALDI imaging mass spectrometer. Appl Surf Sci 255(4):1257–1263. doi:10.1016/j.apsusc.2008.05.058

    CAS  Article  Google Scholar 

  11. 11.

    Dennis E, Ray S, Gundlach-Graham A, Enke C, Barinaga C, Koppenaal D, Hieftje G (2013) Constant-momentum acceleration time-of-flight mass spectrometry with energy focusing. J Am Soc Mass Spectrom 24(12):1853–1861. doi:10.1007/s13361-013-0723-9

    CAS  Article  Google Scholar 

  12. 12.

    Enke CG, Dobson GS (2007) Achievement of energy focus for distance-of-flight mass spectrometry with constant momentum acceleration and an ion mirror. Anal Chem 79:8650–8661. doi:10.1021/ac070638u

    CAS  Article  Google Scholar 

  13. 13.

    Wolff MM, Stephens WE (1953) A pulsed mass spectrometer with time dispersion. Rev Sci Instrum 24(8):616–617. doi:10.1063/1.1770801

    CAS  Article  Google Scholar 

  14. 14.

    Poschenrieder WP (1971) Multiple-focusing time of flight mass spectrometers. Part 1: TOFMS with equal momentum acceleration. Int J Mass Spectrom 6:413–426. doi:10.1016/0020-7381(71)85019-2

    Google Scholar 

  15. 15.

    Ioanoviciu D (1999) Delayed extraction-constant momentum time-of-flight mass spectrometry. Nucl Inst Methods Phys Res Sect A 427:157–160. doi:10.1016/S0168-9002(98)01546-0

    CAS  Article  Google Scholar 

  16. 16.

    Santacruz CP, Hankansson P, Barofsky DF, Piyadasa CKG (2007) A constant-momentum/energy-selector time-of-flight mass spectrometer. J Am Soc Mass Spectrom 18:92–101. doi:10.1016/j.jasms.2006.08.020

    CAS  Article  Google Scholar 

  17. 17.

    Dennis EA, Gundlach-Graham AW, Enke CG, Ray SJ, Carado AJ, Barinaga CJ, Koppenaal DW, Hieftje GM (2013) How constant-momentum acceleration decouples energy and space focusing in distance-of-flight and time-of-flight mass spectrometries. J Am Soc Mass Spectrom 24:690–700. doi:10.1007/s13361-013-0587-z

    CAS  Article  Google Scholar 

  18. 18.

    Enke CG, Ray SJ, Graham AW, Dennis EA, Hieftje GM, Carado AJ, Barinaga CJ, Koppenaal DW (2012) Distance-of-flight mass spectrometry: a new paradigm for mass separation and detection. Annu Rev Anal Chem 5(1):487–504. doi:10.1146/annurev-anchem-091411-121050

    CAS  Article  Google Scholar 

  19. 19.

    Graham AWG, Ray SJ, Enke CG, Barinaga CJ, Koppenaal DW, Hieftje GM (2011) First distance-of-flight instrument: opening a new paradigm in mass spectrometry. J Am Soc Mass Spectrom 22:110–117. doi:10.1007/s13361-010-0005-8

    CAS  Article  Google Scholar 

  20. 20.

    Graham AWG, Ray SJ, Enke CG, Felton JA, Carado AJ, Barinaga CJ, Koppenaal DW, Hieftje GM (2011) Resolution and mass range performance in distance-of-flight mass spectrometry with a multichannel focal-plane camera detector. Anal Chem 83(22):8552–8559. doi:10.1021/ac201876y

    CAS  Article  Google Scholar 

  21. 21.

    Gundlach-Graham AW, Dennis EA, Ray SJ, Enke CG, Carado AJ, Barinaga CJ, Koppenaal DW, Hieftje GM (2012) Extension of the focusable mass range in distance-of-flight mass spectrometry with multiple detectors. Rapid Commun Mass Spectrom 26(21):2526–2534. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

    CAS  Article  Google Scholar 

  22. 22.

    Myers DP, Li G, Hieftje GM (1994) An inductively coupled plasma-time-of-flight mass spectrometer of elemental analysis. Part I: optimization and characteristics. J Am Soc Mass Spectrom 5:1008–1016. doi:10.1016/1044-0305(94)800

    CAS  Article  Google Scholar 

  23. 23.

    Myers DP, Li G, Mahoney PP, Hieftje GM (1995) An inductively coupled plasma-time-of-flight mass spectrometer of elemental analysis. Part II: direct current quadrupole lens system for improved resolution. J Am Soc Mass Spectrom 6:400–410. doi:10.1016/1044-0305(95)00026-A

    CAS  Article  Google Scholar 

  24. 24.

    Myers DP, Li G, Mahoney PP, Hieftje GM (1995) An inductively coupled plasma-time-of-flight mass spectrometer of elemental analysis. Part III: analytical performance. J Am Soc Mass Spectrom 6:411–420. doi:10.1016/1044-0305(95)00027-B

    CAS  Article  Google Scholar 

  25. 25.

    Gundlach-Graham A, Dennis E, Ray S, Enke C, Barinaga C, Koppenaal D, Hieftje G (2013) Interleaved distance-of-flight mass spectrometry: a simple method to improve the instrument duty factor. J Am Soc Mass Spectrom 24(11):1736–1744. doi:10.1007/s13361-013-0718-6

    CAS  Article  Google Scholar 

  26. 26.

    Marcus RK, Broekaert JAC (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, Great Britain

    Google Scholar 

  27. 27.

    Coles JN, Guilhaus M (1994) Resolution limitations from detector pulse width and jitter in a linear orthogonal-acceleration time-of-flight mass spectrometer. J Am Soc Mass Spectrom 5(8):772–778. doi:10.1016/S1044-0305(96)00199-7

    CAS  Article  Google Scholar 

  28. 28.

    Cotter RJ (1997) Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research. American Chemical Society, Washington, DC

    Google Scholar 

  29. 29.

    Szumlas AW, Rogers DA, Hieftje GM (2005) Design and construction of a mechanically simple, interdigitated-wire ion gate. Rev Sci Instrum 76(8):086108. doi:10.1006/mchj.1993.1102

    Article  Google Scholar 

  30. 30.

    Brenton AG, Krastev T, Rousell DJ, Kennedy MA, Craze AS, Williams CM (2007) Improvement of the duty cycle of an orthogonal acceleration time-of-flight mass spectrometer using ion gates. Rapid Commun Mass Spectrom 21(18):3093–3102. doi:10.1016/1044-0305(94)800

    CAS  Article  Google Scholar 

  31. 31.

    Sin CH, Lee ED, Lee ML (1991) Atmospheric pressure ionization time-of-flight mass spectrometry with a supersonic ion beam. Anal Chem 63:2897–2900. doi:10.1016/1044-0305(95)00026-A

    CAS  Article  Google Scholar 

  32. 32.

    Myers DP, Hieftje GM (1993) Preliminary design considerations and characteristics of an inductively coupled plasma-time-of-flight mass spectrometer. Microchem J 48:259–277. doi:10.1006/mchj.1993.1102

    CAS  Article  Google Scholar 

  33. 33.

    Guilhaus M (1994) Spontaneous and deflected drift-trajectories in orthogonal acceleration time-of-flight mass spectrometry. J Am Soc Mass Spectrom 5:588–595. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

    CAS  Article  Google Scholar 

  34. 34.

    Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Gunther D (2013) A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom 28(2):226–233. doi:10.1039/c2ja30227f

    CAS  Article  Google Scholar 

  35. 35.

    Burgoyne TW, Hieftje GM, Hites RA (1997) Reducing the energy distribution in a plasma-source sector-field mass spectrometer interface. J Anal At Spectrom 12:1149–1153. doi:10.1039/A607861C

    CAS  Article  Google Scholar 

  36. 36.

    Davidson RL, Earle GD (2011) A design approach for improving the performance of single-grid planar retarding potential analyzers. Phys Plasmas 18(1):012905. doi:10.1103/PhysRev.69.674.2

    Article  Google Scholar 

  37. 37.

    Mahoney PP, Ray SJ, Hieftje GM (1997) Continuum background reduction in orthogonal-acceleration time-of-flight mass spectrometry with continuous ion sources. J Am Soc Mass Spectrom 8:125–131. doi:10.1016/S1044-0305(96)00199-7

    CAS  Article  Google Scholar 

  38. 38.

    Simpson JA (1962) Design of Retarding Field Energy Analyzers. Rev Sci Instrum 32 (12). doi:10.1063/1.1717235

  39. 39.

    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822. doi:10.1021/ac901049w

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the National Science Foundation through grant DBI-1062846. Partial salary support was provided by the US Department of Energy through grant DE-FG02-09ER14980. The authors would like to thank the Edward G. Blair Mechanical Instrument Services and the Electronic Instrument Services Facilities at Indiana University for their assistance with instrument construction. This work was performed in collaboration with Pacific Northwest National Laboratory, operated for the US Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RLO-1830op.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gary M. Hieftje.

Additional information

Published in the topical collection Emerging Concepts and Strategies in Analytical Glow Discharges with guest editors Rosario Pereiro and Steven Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4.23 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dennis, E.A., Gundlach-Graham, A.W., Ray, S.J. et al. Zoom-TOFMS: addition of a constant-momentum-acceleration “zoom” mode to time-of-flight mass spectrometry. Anal Bioanal Chem 406, 7419–7430 (2014). https://doi.org/10.1007/s00216-014-7875-8

Download citation

Keywords

  • Mass spectrometry
  • ICP-MS
  • Spectroscopy
  • Instrumentation
  • Metals
  • Heavy metals