Analytical and Bioanalytical Chemistry

, Volume 406, Issue 29, pp 7419–7430 | Cite as

Zoom-TOFMS: addition of a constant-momentum-acceleration “zoom” mode to time-of-flight mass spectrometry

  • Elise A. Dennis
  • Alexander W. Gundlach-Graham
  • Steven J. Ray
  • Christie G. Enke
  • Charles J. Barinaga
  • David W. Koppenaal
  • Gary M. Hieftje
Research Paper
Part of the following topical collections:
  1. Emerging Concepts and Strategies in Analytical Glow Discharges


In this study, we demonstrate the performance of a new mass spectrometry concept called zoom time-of-flight mass spectrometry (zoom-TOFMS). In our zoom-TOFMS instrument, we combine two complementary types of TOFMS: conventional, constant-energy acceleration (CEA) TOFMS and constant-momentum acceleration (CMA) TOFMS to provide complete mass-spectral coverage as well as enhanced resolution and duty factor for a narrow, targeted mass region, respectively. Alternation between CEA- and CMA-TOFMS requires only that electrostatic instrument settings (i.e., reflectron and ion optics) and ion acceleration conditions be changed. The prototype zoom-TOFMS instrument has orthogonal-acceleration geometry, a total field-free distance of 43 cm, and a direct-current glow-discharge ionization source. Experimental results demonstrate that the CMA-TOFMS “zoom” mode offers resolution enhancement of 1.6 times over single-stage acceleration CEA-TOFMS. For the atomic mass range studied here, the maximum resolving power at full-width half-maximum observed for CEA-TOFMS was 1,610 and for CMA-TOFMS the maximum was 2,550. No difference in signal-to-noise (S/N) ratio was observed between the operating modes of zoom-TOFMS when both were operated at equivalent repetition rates. For a 10-kHz repetition rate, S/N values for CEA-TOFMS varied from 45 to 990 and from 67 to 10,000 for CMA-TOFMS. This resolution improvement is the result of a linear TOF-to-mass scale and the energy-focusing capability of CMA-TOFMS. Use of CMA also allows ions outside a given m/z range to be rejected by simple ion-energy barriers to provide a substantial improvement in duty factor.


Mass spectrometry ICP-MS Spectroscopy Instrumentation Metals Heavy metals 

Supplementary material

216_2014_7875_MOESM1_ESM.pdf (4.2 mb)
ESM 1(PDF 4.23 MB)


  1. 1.
    Stephens WE (1946) Proceedings of the American Physical Society. Phys Rev 69(11–12):674. doi:10.1103/PhysRev.69.674.2 Google Scholar
  2. 2.
    Cameron AE, Eggers JDF (1948) An Ion “Velocitron”. Rev Sci Instrum 19(9):605–607. doi:10.1063/1.1741336 CrossRefGoogle Scholar
  3. 3.
    Xian F, Hendrickson CL, Marshall AG (2012) High resolution mass spectrometry. Anal Chem 84(2):708–719. doi:10.1021/ac203191t CrossRefGoogle Scholar
  4. 4.
    Gross JH (2004) Mass Spectrometry: A Textbook. Springer, Leipzig, GermanyCrossRefGoogle Scholar
  5. 5.
    Ioanoviciu D (2010) The spiral main path electric deflector as a time-of-flight mass analyzer. Int J Mass Spectrom 290(2–3):145–147. doi:10.1039/A607861C CrossRefGoogle Scholar
  6. 6.
    Satoh T, Sato T, Tamura J (2007) Development of a high-performance MALDI-TOF mass spectrometer utilizing a spiral ion trajectory. J Am Soc Mass Spectrom 18(7):1318–1323. doi:10.1016/j.jasms.2007.04.010 CrossRefGoogle Scholar
  7. 7.
    Toyoda M, Okumura D, Ishihara M, Katakuse I (2003) Multi-turn time-of-flight mass spectrometers with electrostatic sectors. J Mass Spectrom 38(11):1125–1142. doi:10.1002/jms.546 CrossRefGoogle Scholar
  8. 8.
    Klitzke CF, Corilo YE, Siek K, Binkley J, Patrick J, Eberlin MN (2012) Petroleomics by ultrahigh-resolution time-of-flight mass spectrometry. Energy Fuel 26(9):5787–5794. doi:10.1021/ef300961c CrossRefGoogle Scholar
  9. 9.
    Arteav V, Mitchell JC, Verentchikov A, Yavor M (2008) Multi-reflecting time-of-flight mass spectrometer and method of use. United States Patent US7385187 B2Google Scholar
  10. 10.
    Hazama H, Aoki J, Nagao H, Suzuki R, Tashima T, Fujii K-i, Masuda K, Awazu K, Toyoda M, Naito Y (2008) Construction of a novel stigmatic MALDI imaging mass spectrometer. Appl Surf Sci 255(4):1257–1263. doi:10.1016/j.apsusc.2008.05.058 CrossRefGoogle Scholar
  11. 11.
    Dennis E, Ray S, Gundlach-Graham A, Enke C, Barinaga C, Koppenaal D, Hieftje G (2013) Constant-momentum acceleration time-of-flight mass spectrometry with energy focusing. J Am Soc Mass Spectrom 24(12):1853–1861. doi:10.1007/s13361-013-0723-9 CrossRefGoogle Scholar
  12. 12.
    Enke CG, Dobson GS (2007) Achievement of energy focus for distance-of-flight mass spectrometry with constant momentum acceleration and an ion mirror. Anal Chem 79:8650–8661. doi:10.1021/ac070638u CrossRefGoogle Scholar
  13. 13.
    Wolff MM, Stephens WE (1953) A pulsed mass spectrometer with time dispersion. Rev Sci Instrum 24(8):616–617. doi:10.1063/1.1770801 CrossRefGoogle Scholar
  14. 14.
    Poschenrieder WP (1971) Multiple-focusing time of flight mass spectrometers. Part 1: TOFMS with equal momentum acceleration. Int J Mass Spectrom 6:413–426. doi:10.1016/0020-7381(71)85019-2 Google Scholar
  15. 15.
    Ioanoviciu D (1999) Delayed extraction-constant momentum time-of-flight mass spectrometry. Nucl Inst Methods Phys Res Sect A 427:157–160. doi:10.1016/S0168-9002(98)01546-0 CrossRefGoogle Scholar
  16. 16.
    Santacruz CP, Hankansson P, Barofsky DF, Piyadasa CKG (2007) A constant-momentum/energy-selector time-of-flight mass spectrometer. J Am Soc Mass Spectrom 18:92–101. doi:10.1016/j.jasms.2006.08.020 CrossRefGoogle Scholar
  17. 17.
    Dennis EA, Gundlach-Graham AW, Enke CG, Ray SJ, Carado AJ, Barinaga CJ, Koppenaal DW, Hieftje GM (2013) How constant-momentum acceleration decouples energy and space focusing in distance-of-flight and time-of-flight mass spectrometries. J Am Soc Mass Spectrom 24:690–700. doi:10.1007/s13361-013-0587-z CrossRefGoogle Scholar
  18. 18.
    Enke CG, Ray SJ, Graham AW, Dennis EA, Hieftje GM, Carado AJ, Barinaga CJ, Koppenaal DW (2012) Distance-of-flight mass spectrometry: a new paradigm for mass separation and detection. Annu Rev Anal Chem 5(1):487–504. doi:10.1146/annurev-anchem-091411-121050 CrossRefGoogle Scholar
  19. 19.
    Graham AWG, Ray SJ, Enke CG, Barinaga CJ, Koppenaal DW, Hieftje GM (2011) First distance-of-flight instrument: opening a new paradigm in mass spectrometry. J Am Soc Mass Spectrom 22:110–117. doi:10.1007/s13361-010-0005-8 CrossRefGoogle Scholar
  20. 20.
    Graham AWG, Ray SJ, Enke CG, Felton JA, Carado AJ, Barinaga CJ, Koppenaal DW, Hieftje GM (2011) Resolution and mass range performance in distance-of-flight mass spectrometry with a multichannel focal-plane camera detector. Anal Chem 83(22):8552–8559. doi:10.1021/ac201876y CrossRefGoogle Scholar
  21. 21.
    Gundlach-Graham AW, Dennis EA, Ray SJ, Enke CG, Carado AJ, Barinaga CJ, Koppenaal DW, Hieftje GM (2012) Extension of the focusable mass range in distance-of-flight mass spectrometry with multiple detectors. Rapid Commun Mass Spectrom 26(21):2526–2534. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E CrossRefGoogle Scholar
  22. 22.
    Myers DP, Li G, Hieftje GM (1994) An inductively coupled plasma-time-of-flight mass spectrometer of elemental analysis. Part I: optimization and characteristics. J Am Soc Mass Spectrom 5:1008–1016. doi:10.1016/1044-0305(94)800 CrossRefGoogle Scholar
  23. 23.
    Myers DP, Li G, Mahoney PP, Hieftje GM (1995) An inductively coupled plasma-time-of-flight mass spectrometer of elemental analysis. Part II: direct current quadrupole lens system for improved resolution. J Am Soc Mass Spectrom 6:400–410. doi:10.1016/1044-0305(95)00026-A CrossRefGoogle Scholar
  24. 24.
    Myers DP, Li G, Mahoney PP, Hieftje GM (1995) An inductively coupled plasma-time-of-flight mass spectrometer of elemental analysis. Part III: analytical performance. J Am Soc Mass Spectrom 6:411–420. doi:10.1016/1044-0305(95)00027-B CrossRefGoogle Scholar
  25. 25.
    Gundlach-Graham A, Dennis E, Ray S, Enke C, Barinaga C, Koppenaal D, Hieftje G (2013) Interleaved distance-of-flight mass spectrometry: a simple method to improve the instrument duty factor. J Am Soc Mass Spectrom 24(11):1736–1744. doi:10.1007/s13361-013-0718-6 CrossRefGoogle Scholar
  26. 26.
    Marcus RK, Broekaert JAC (2003) Glow discharge plasmas in analytical spectroscopy. Wiley, Great BritainGoogle Scholar
  27. 27.
    Coles JN, Guilhaus M (1994) Resolution limitations from detector pulse width and jitter in a linear orthogonal-acceleration time-of-flight mass spectrometer. J Am Soc Mass Spectrom 5(8):772–778. doi:10.1016/S1044-0305(96)00199-7 CrossRefGoogle Scholar
  28. 28.
    Cotter RJ (1997) Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research. American Chemical Society, Washington, DCGoogle Scholar
  29. 29.
    Szumlas AW, Rogers DA, Hieftje GM (2005) Design and construction of a mechanically simple, interdigitated-wire ion gate. Rev Sci Instrum 76(8):086108. doi:10.1006/mchj.1993.1102 CrossRefGoogle Scholar
  30. 30.
    Brenton AG, Krastev T, Rousell DJ, Kennedy MA, Craze AS, Williams CM (2007) Improvement of the duty cycle of an orthogonal acceleration time-of-flight mass spectrometer using ion gates. Rapid Commun Mass Spectrom 21(18):3093–3102. doi:10.1016/1044-0305(94)800 CrossRefGoogle Scholar
  31. 31.
    Sin CH, Lee ED, Lee ML (1991) Atmospheric pressure ionization time-of-flight mass spectrometry with a supersonic ion beam. Anal Chem 63:2897–2900. doi:10.1016/1044-0305(95)00026-A CrossRefGoogle Scholar
  32. 32.
    Myers DP, Hieftje GM (1993) Preliminary design considerations and characteristics of an inductively coupled plasma-time-of-flight mass spectrometer. Microchem J 48:259–277. doi:10.1006/mchj.1993.1102 CrossRefGoogle Scholar
  33. 33.
    Guilhaus M (1994) Spontaneous and deflected drift-trajectories in orthogonal acceleration time-of-flight mass spectrometry. J Am Soc Mass Spectrom 5:588–595. doi:10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E CrossRefGoogle Scholar
  34. 34.
    Borovinskaya O, Hattendorf B, Tanner M, Gschwind S, Gunther D (2013) A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J Anal At Spectrom 28(2):226–233. doi:10.1039/c2ja30227f CrossRefGoogle Scholar
  35. 35.
    Burgoyne TW, Hieftje GM, Hites RA (1997) Reducing the energy distribution in a plasma-source sector-field mass spectrometer interface. J Anal At Spectrom 12:1149–1153. doi:10.1039/A607861C CrossRefGoogle Scholar
  36. 36.
    Davidson RL, Earle GD (2011) A design approach for improving the performance of single-grid planar retarding potential analyzers. Phys Plasmas 18(1):012905. doi:10.1103/PhysRev.69.674.2 CrossRefGoogle Scholar
  37. 37.
    Mahoney PP, Ray SJ, Hieftje GM (1997) Continuum background reduction in orthogonal-acceleration time-of-flight mass spectrometry with continuous ion sources. J Am Soc Mass Spectrom 8:125–131. doi:10.1016/S1044-0305(96)00199-7 CrossRefGoogle Scholar
  38. 38.
    Simpson JA (1962) Design of Retarding Field Energy Analyzers. Rev Sci Instrum 32 (12). doi:10.1063/1.1717235
  39. 39.
    Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822. doi:10.1021/ac901049w CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elise A. Dennis
    • 1
  • Alexander W. Gundlach-Graham
    • 1
  • Steven J. Ray
    • 1
  • Christie G. Enke
    • 1
    • 2
  • Charles J. Barinaga
    • 3
  • David W. Koppenaal
    • 3
  • Gary M. Hieftje
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Department of Chemistry and Chemical BiologyUniversity of New MexicoAlbuquerqueUSA
  3. 3.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations