Analytical and Bioanalytical Chemistry

, Volume 406, Issue 27, pp 6827–6833 | Cite as

Detection of the food allergen celery via loop-mediated isothermal amplification technique

  • Celine Zahradnik
  • Roland Martzy
  • Robert L. Mach
  • Rudolf Krska
  • Andreas H. Farnleitner
  • Kurt BrunnerEmail author
Research Paper
Part of the following topical collections:
  1. Advanced Food Analysis


Since 2005, celery and celery products have to be labeled according to Directive 2003/89/EC due to their allergenic potential. In order to provide a DNA-based, rapid and simple detection method suitable for high-throughput analysis, a loop-mediated isothermal amplification (LAMP) assay for the detection of celery (Apium graveolens) was developed. The assay was tested for specificity for celery since closely related species also hold food relevance. The limit of detection (LOD) for spiked food samples was found to be as low as 7.8 mg of dry celery powder per kilogram. An evaluation of different amplification and detection platforms was performed to show reliable detection independent from the instrument used for amplification (thermal cycler or heating block) and detection mechanisms (real-time fluorescence detection, agarose gel electrophoresis or nucleic acid staining). The analysis of 10 commercial food samples representing diverse and complex food matrices, and a false-negative rate of 0 % for approximately 24 target copies or 0.08 ng celery DNA for three selected food matrices show that LAMP has the potential to be used as an alternative strategy for the detection of allergenic celery. The performance of the developed LAMP assay turned out to be equal or superior to the best available PCR assay for the detection of celery in food products.


Loop-mediated isothermal amplification Celery Food allergen Isothermal amplification Visual detection 



This work was financially supported by the Federal Country Lower Austria in cooperation with the European Regional Development Fund (ERDF).

Supplementary material

216_2014_7873_MOESM1_ESM.pdf (192 kb)
ESM 1 (PDF 191 kb)


  1. 1.
    Etesamifar M, Wüthrich B (1998) IgE-vermittelte Nahrungsmittelallergie bei 383 Patienten unter Berücksichtigung des oralen Allergie-Syndroms. Allergologie 21:451–457Google Scholar
  2. 2.
    André F, André C, Colin L, Cacaraci F, Cavagna S (1994) Role of new allergens consumption in the increased incidence of food sensitization in France. Toxicology 92:77–83CrossRefGoogle Scholar
  3. 3.
    Ballmer-Weber BK, Vieths S, Lüttkopf D, Heuschmann P, Wüthrich B (2000) Celery allergy confirmed by double-blind, placebo-controlled food challenge: a clinical study in 32 subjects with a history of adverse reactions to celery root. J Allergy Clin Immunol 106:373–378CrossRefGoogle Scholar
  4. 4.
    Wüthrich B, Stäger J, Johansson SGO (1990) Celery allergy associated with birch and mugwort pollinosis. Allergy 45:566–571CrossRefGoogle Scholar
  5. 5.
    Jankiewicz A, Aulepp H, Baltes W, Bögl KW, Dehne LI, Zuberbier T (1996) Allergic sensitisation to native and heated celery root in pollen-sensitive patients investigated by skin test and IgE binding. Int Arch Allergy Immunol 111:268–278CrossRefGoogle Scholar
  6. 6.
    Breiteneder H, Hoffmann-Sommergruber K, O’Riordain G, Susani M, Ahorn H, Ebner C, Kraft D, Scheiner O (1995) Molecular characterization of Api g 1, the major allergen of celery (Apium graveolens), and its immunological and structural relationships to a group of 17-kDa tree pollen allergens. Eur J Biochem 233:484–489CrossRefGoogle Scholar
  7. 7.
    Hoffmann-Sommergruber K, Demoly P, Crameri R, Breiteneder H, Ebner C, Laimer Camara da Machao M, Blaser K, Ismail C, Scheiner O, Bousquet J, Günther M (1999) IgE reactivity to Api g 1, a major celery allergen, in a Central European population is based on primary sensitization by Bet v 1. J Allergy Clin Immunol 107:478–484CrossRefGoogle Scholar
  8. 8.
    Bublin M, Radauer C, Wilson IB, Kraft D, Scheiner O, Breiteneder H, Hoffmann-Sommergruber K (2003) Cross-reactive N-glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB J 17:1697–1699Google Scholar
  9. 9.
    European Commission (2003) Off J Eur Union 46:15Google Scholar
  10. 10.
    Bollen MA, Garcia A, Cordewener JHG, Wichers HJ, Helsper JPFG, Savelkoul HFJ, van Boekel MAJS (2007) Purification and characterization of natural Bet v 1 from birch pollen and related allergens from carrot and celery. Mol Nutr Food Res 51:1527–1536CrossRefGoogle Scholar
  11. 11.
    Demmel A, Hahn A (2010) In: Busch U (ed) Molekularbiologische Methoden in der Lebensmittelanalytik, 1st edn. Berlin, SpringerGoogle Scholar
  12. 12.
    Stephan O, Weisz N, Vieths S (2004) Protein quantification, sandwich ELISA, and real-time PCR used to monitor industrial cleaning procedures for contamination with peanut and celery allergens. J AOAC Int 87(6):1448–1457Google Scholar
  13. 13.
    Hupfer C, Waiblinger HU, Busch U (2007) Development and validation of a real-time PCR detection method for celery in food. Eur Food Res Technol 225:329–335CrossRefGoogle Scholar
  14. 14.
    Mustorp S, Engdahl-Axelsson C, Svensson U, Holck A (2008) Detection of celery (Apium gaveolens), mustard (Sinapis alba, Brassica juncea, Brassica nigra) and sesame (Sesamum indicum) in food by real-time PCR. Eur Food Res Technol 226:771–778CrossRefGoogle Scholar
  15. 15.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):I–VIICrossRefGoogle Scholar
  16. 16.
    Aliotta JM, Pelletier JJ, Ware JL, Moran LS, Brenner JS, Kong H (1996) Thermostable Bst DNA polymerase I lacks a 3′→5′ proofreading exonuclease activity. Genet Anal Biomol Eng 12(5–6):185–195CrossRefGoogle Scholar
  17. 17.
    Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes 16:223–229CrossRefGoogle Scholar
  18. 18.
    Iwamoto T, Sonobe T, Hayashi K (2003) Loop-mediated isothermal amplification for direct detection Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41(6):2616–2622CrossRefGoogle Scholar
  19. 19.
    Focke F, Haase I, Fischer M (2013) Loop-mediated isothermal amplification (LAMP): methods for plant species identification in food. J Agric Food Chem 61:2943–2949CrossRefGoogle Scholar
  20. 20.
    Dovičovičová L, Olexová L, Pangallo D, Siekel P, Kuchta T (2004) Polymerase chain reaction (PCR) for the detection of celery (Apium gaveolens) in food. Eur Food Res Technol 218:493–495CrossRefGoogle Scholar
  21. 21.
    Brunner K, Paris MPK, Paolino G, Bürstmayr H, Lemmens M, Berthiller F, Schuhmacher R, Krska R, Mach RL (2009) A reference-gene-based quantitative PCR method as a tool to determine Fusarium resistance in wheat. Anal Bioanal Chem 395:1385–1394CrossRefGoogle Scholar
  22. 22.
    Monis PT, Giglio S, Saint CP (2005) Comparison of SYTO9 and SYBR Green I for real-time polymerase chain reaction and investigation of the effect of dye concetration on amplification and DNA melting curve analysis. Anal Biochem 340(1):24–34CrossRefGoogle Scholar
  23. 23.
    Yang X, Quiros CF (1995) Characterizing the celery genome with DNA-based genetic markers. J Amer Soc Hortic Sci 120(5):747–751Google Scholar
  24. 24.
    European Network of GMO Laboratories (2008) Definition of minimum performance requirements for analytical methods of GMO testing.
  25. 25.
    Han F, Ge B (2010) Quantitative detection of Vibrio vulnificus in raw oysters by real-time loop-mediated isothermal amplification. Int J Food Microbiol 142:60–66CrossRefGoogle Scholar
  26. 26.
    Aoi Y, Hosogai M, Tsuneda S (2006) Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. J Biotechnol 125:484–491CrossRefGoogle Scholar
  27. 27.
    Mori Y, Kitao M, Tomita M, Notomi T (2004) Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 59:145–157CrossRefGoogle Scholar
  28. 28.
    Cankar K, Štebih D, Dreo T, Žel J, Gruden K (2006) Critical points of DNA quantification by real-time PCR effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnol 6:37CrossRefGoogle Scholar
  29. 29.
    Kaneko H, Kawana T, Fukushima E, Suzutani T (2007) Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J Biochem Biophys Methods 70:499–501CrossRefGoogle Scholar
  30. 30.
    Lee D, La Mura M, Allnutt TR, Powell W (2009) Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences. BMC Biotechnol 9:7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Celine Zahradnik
    • 1
  • Roland Martzy
    • 1
  • Robert L. Mach
    • 2
  • Rudolf Krska
    • 3
  • Andreas H. Farnleitner
    • 2
  • Kurt Brunner
    • 1
    Email author
  1. 1.Institute of Chemical Engineering, IFA-Tulln, Center for Analytical ChemistryVienna University of TechnologyTullnAustria
  2. 2.Institute of Chemical Engineering, Gene Technology GroupVienna University of TechnologyViennaAustria
  3. 3.Department IFA-Tulln, Center for Analytical ChemistryUniversity of Natural Resources and Applied Life Sciences ViennaTullnAustria

Personalised recommendations