Skip to main content

Use of solid-phase microextraction coupled to gas chromatography–mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls

Abstract

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which have a severe life-long effect on behavior and social functioning, and which are associated with metabolic abnormalities. Their diagnosis is on the basis of behavioral and developmental signs usually detected before three years of age, and there is no reliable biological marker. The objective of this study was to establish the volatile urinary metabolomic profiles of 24 autistic children and 21 healthy children (control group) to investigate volatile organic compounds (VOCs) as potential biomarkers for ASDs. Solid-phase microextraction (SPME) using DVB/CAR/PDMS sorbent coupled with gas chromatography–mass spectrometry was used to obtain the metabolomic information patterns. Urine samples were analyzed under both acid and alkaline pH, to profile a range of urinary components with different physicochemical properties. Multivariate statistics techniques were applied to bioanalytical data to visualize clusters of cases and to detect the VOCs able to differentiate autistic patients from healthy children. In particular, orthogonal projections to latent structures discriminant analysis (OPLS-DA) achieved very good separation between autistic and control groups under both acidic and alkaline pH, identifying discriminating metabolites. Among these, 3-methyl-cyclopentanone, 3-methyl-butanal, 2-methyl-butanal, and hexane under acid conditions, and 2-methyl-pyrazine, 2,3-dimethyl-pyrazine, and isoxazolo under alkaline pH had statistically higher levels in urine samples from autistic children than from the control group. Further investigation with a higher number of patients should be performed to outline the metabolic origins of these variables, define a possible association with ASDs, and verify the usefulness of these variables for early-stage diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Angley M, Young R, Ellis D, Chan W, McKinnon R (2007) Children and autism–part 1–recognition and pharmacological management. Aust Fam Physician 36:741–744

    Google Scholar 

  2. Johnson CP, Myers SM (2007) Identification and evaluation of children with autism spectrum disorders. Pediatrics 120:1183–1215

    Article  Google Scholar 

  3. Herb B (2012) Autism. Nature 491:S1–S48

    Article  Google Scholar 

  4. Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK (2010) Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 9:2996–3004

    CAS  Article  Google Scholar 

  5. London EA, Etzel RA (2000) The environment as an etiologic factor in autism: a new direction for research. Environ Health Perspect 108:401–404

    Article  Google Scholar 

  6. Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychol 55:323–326

    Article  Google Scholar 

  7. Kałużna-Czaplińska J, Blaszczyk S (2012) The level of arabinitol in autistic children after probiotic therapy. Nutrition 28:124–126

    Article  Google Scholar 

  8. Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862

    CAS  Google Scholar 

  9. Perry TL, Hansen S, Christie RG (1978) Amino compounds and organic acids in CSF, plasma, and urine of autistic children. Biol Psychiatry 13:575–586

    CAS  Google Scholar 

  10. Winsberg BG, Sverd J, Castells S, Hurwic M, Perel JM (1980) Estimation of monoamine and cyclic-AMP turnover and amino acid concentrations of spinal fluid in autistic children. Neuropediatrics 11:250–255

    CAS  Article  Google Scholar 

  11. Rolf LH, Haarmann FY, Grotemeyer KH, Kehrer H (1993) Serotonin and amino acid content in platelets of autistic children. Acta Psychiatr Scand 87:312–316

    CAS  Article  Google Scholar 

  12. Tirouvanziam R, Obukhanych TV, Laval J, Aronov PA, Libove R, Banerjee AG, Parker KJ, O’Hara R, Herzenberg LA, Herzenberg LA, Hardan AY (2012) Distinct plasma profile of polar neutral amino acids, leucine, and glutamate in children with autism spectrum disorders. J Autism Dev Disord 42:827–836

    Article  Google Scholar 

  13. Ratajczak HV (2011) Theoretical aspects of autism: biomarkers–a review. J Immunot 8:80–94

    Article  Google Scholar 

  14. Rossignol DA, Frye RE (2012) Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 17:290–314

    CAS  Article  Google Scholar 

  15. Laszlo A, Horvath E, Eck E, Fekete M (1994) Serum serotonin, lactate and pyruvate levels in infantile autistic children. Clin Chim Acta 229:205–207

    CAS  Article  Google Scholar 

  16. Bradstreet JJ, Smith S, Baral M, Rossignol DA (2010) Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern Med Rev 15:15–32

    Google Scholar 

  17. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    CAS  Google Scholar 

  18. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab 8:34–65

    Article  Google Scholar 

  19. Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J, Chauhan A (2013) Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatr 3:1–8

    Article  Google Scholar 

  20. Parracho HMRT, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54:987–991

    Article  Google Scholar 

  21. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418–424

    Article  Google Scholar 

  22. Williams BL, Hornig M, Parekh T, Lipkin WI (2012) Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio 3:1–3

    Article  Google Scholar 

  23. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R (2013) Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 8:e76993

    Article  Google Scholar 

  24. Wang L, Angley MT, Gerber JP, Sorich MJ (2011) A review of candidate urinary biomarkers for autism spectrum disorder. Biomarkers 16:537–552

    CAS  Article  Google Scholar 

  25. Żurawicz E, Kałużna-Czaplińska J, Rynkowski J (2013) Chromatographic methods in the study of autism. Biomed Chromatogr 27:1273–1279

    Article  Google Scholar 

  26. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics–a review in human disease diagnosis. Anal Chim Acta 659:23–33

    CAS  Article  Google Scholar 

  27. Mills GA, Walker V (2001) Headspace solid-phase microextraction profiling of volatile compounds in urine: application to metabolic investigations. J Chromatogr B Biomed Sci Appl 753:259–268

    CAS  Article  Google Scholar 

  28. Zlatkis A, Brazell RS, Poole CF (1981) The role of organic volatile profiles in clinical diagnosis. Clin Chem 27:789–797

    CAS  Google Scholar 

  29. Wahl HG, Hoffmann A, Luft D, Liebich HM (1999) Analysis of volatile organic compounds in human urine by headspace gas chromatography-mass spectrometry with a multipurpose sampler. J Chromatogr A 847:117–125

    CAS  Article  Google Scholar 

  30. Shirasu M, Touhara K (2011) The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem 150:257–266

    CAS  Article  Google Scholar 

  31. Lechner M, Rieder J (2007) Mass spectrometric profiling of low-molecular-weight volatile compounds–diagnostic potential and latest applications. Curr Med Chem 14:987–995

    CAS  Article  Google Scholar 

  32. Banday KM, Pasikanti KK, Chan EC, Singla R, Rao KV, Chauhan VS, Nanda RK (2011) Use of urine volatile organic compounds to discriminate tuberculosis patients from healthy subjects. Anal Chem 83:5526–5534

    CAS  Article  Google Scholar 

  33. Silva CL, Passos M, Câmara JS (2011) Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br J Cancer 105:1894–1904

    CAS  Article  Google Scholar 

  34. Silva CL, Passos M, Câmara JS (2012) Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers–a powerful strategy for breast cancer diagnosis. Talanta 89:360–368

    CAS  Article  Google Scholar 

  35. Pawliszyn J (2009) Handbook of Solid Phase Microextraction. Chemical Industry Press, Beijing

    Google Scholar 

  36. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    CAS  Article  Google Scholar 

  37. Jackson JE (1991) A users guide to principal components. John Wiley, New York

    Book  Google Scholar 

  38. Barker M, Rayens W (2007) Partial least squares for discrimination. J Chemometr 17:166–173

    Article  Google Scholar 

  39. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128

    CAS  Article  Google Scholar 

  40. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479

    CAS  Article  Google Scholar 

  41. Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    CAS  Article  Google Scholar 

  42. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    CAS  Article  Google Scholar 

  43. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  44. Kataokaa H, Lordb HL, Pawliszynb J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880:35–62

    Article  Google Scholar 

  45. Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852

    CAS  Article  Google Scholar 

  46. Deng C, Zhang X, Li N (2004) Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography–mass spectrometry. J Chromatogr B 808:269–277

    CAS  Article  Google Scholar 

  47. Mochalski P, Wzorek B, Sliwka I, Amann A (2009) Improved pre-concentration and detection methods for volatile sulphur breath constituents. J. Chromatogr B 877:1856–1866

    CAS  Article  Google Scholar 

  48. Lindon JC, Nicholson JK, Holmes E, Keun HC, Craig A, Pearce JTM, Bruce SJ, Hardy N, Sansone SA, Antti H, Jonsson P, Daykin C, Navarange M, Beger RD, Verheij ER, Amberg A, Baunsgaard D, Cantor GH, Lehman-McKeeman L, Earll M, Wold S, Johansson E, Haselden JN, Kramer K, Thomas C, Lindberg J, Schuppe-Koistinen I, Wilson ID, Reily MD, Robertson DG, Senn H, Krotzky A, Kochhar S, Powell J, van der Ouderaa F, Plumb R, Schaefer H, Spraul M (2005) worki SMRS (is this right), Summary recommendations for standardization and reporting of metabolic analyses. Nat Biotechnol 23:833–838

    CAS  Article  Google Scholar 

  49. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, Bessant C, Connor S, Calmani G, Craig A, Ebbels T, Kell DB, Manetti C, Newton J, Paternostro G, Somorjai R, Sjostrom M, Trygg J, Wulfert F (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241

    CAS  Article  Google Scholar 

  50. Worley B, Powers R (2013) Multivariate analysis in metabolomics. Curr Metabolomics 1:92–107

    CAS  Google Scholar 

  51. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. application in 1H NMR metabonomics. Anal Chem 78:4281–4290

    CAS  Article  Google Scholar 

  52. Veselkov KA, Vingara LK, Masson P, Robinette SL, Want E, Li JV, Barton RH, Boursier-Neyret C, Walther B, Ebbels TM, Pelczer I, Holmes E, Lindon JC, Nicholson JK (2011) Optimized preprocessing of ultra performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem 83:5864–5872

    CAS  Article  Google Scholar 

  53. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S (2006) Multi- and megavariate data analysis. Basic principles and applications. Appendix, IIth edn. Umetrics AB, Sweden, Umeå

    Google Scholar 

  54. Wiklund S, Johansson E, Sjöstroöm L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122

    CAS  Article  Google Scholar 

  55. Smit BA, Engels WJM, Smit G (2009) Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 81:987–999

    CAS  Article  Google Scholar 

  56. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin–the antioxidant proteins. Life Sci 75:2539–2549

    CAS  Article  Google Scholar 

  57. Horvath K, Papadimitriou JC, Rabsztyn A, Drachenberg C, Tildon JT (1999) Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 135:559–563

    CAS  Article  Google Scholar 

  58. Kushak RI, Lauwers GY, Winter HS, Buie TM (2011) Intestinal disaccharidase activity in patients with autism: effect of age, gender, and intestinal inflammation. Autism 15:285–294

    Article  Google Scholar 

  59. Maga JA (1992) Wazines update. Food Rev Znt 8:479–558

    CAS  Article  Google Scholar 

  60. Lancker FV, Adams A, De Kimpe N (2010) Formation of pyrazines in Maillard model system of lysine-containing dipeptides”. J Agric Food Chem 58:2470–2478

    Article  Google Scholar 

  61. Nicolotti L, Cordero C, Bicchi C, Rubiolo P, Sgorbini B, Liberto E (2013) Volatile profiling of high quality hazelnuts (Corylus avellana L.): chemical indices of roastin. Food Chem 138:1723–1733

    CAS  Article  Google Scholar 

  62. Kim YH (2013) An accurate and reliable analysis of trimethylamine using thermal desorption and gas chromatography-time of flight mass spectrometry. Anal Chim Acta 780:46–54

    CAS  Article  Google Scholar 

  63. Mitchell SC, Zhang AQ, Smith RL (2002) Chemical and biological liberation of trimethylamine from food. J Food Comp Anal 15:277–282

    CAS  Article  Google Scholar 

Download references

Acknowledgment

We thank study subjects and their families for participating in this study, and Dr Spagnuolo, head of the no-profit association “Associazione Irpinia Pianeta Autismo (AIPA)” located in Avellino (Italy), for her valuable support. We would also like to acknowledge Christopher Nardone for reviewing the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaria Cozzolino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 421 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cozzolino, R., De Magistris, L., Saggese, P. et al. Use of solid-phase microextraction coupled to gas chromatography–mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem 406, 4649–4662 (2014). https://doi.org/10.1007/s00216-014-7855-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7855-z

Keywords

  • Autism
  • Urine samples
  • Solid-phase microextraction
  • Volatile organic compounds
  • Orthogonal projections to latent structures discriminant analysis