Differentiation and quantification of synthetic phosphatidylethanol (PEth) homologues by 1H- and 13C-NMR in polar organic solvents


Various phosphatidylethanol (PEth) derivatives, the corresponding reversed positional isomers (RPI-PEths), lyso-PEth-16:0, and penta-deuterium-labeled PEth analogs (d5-PEths), were synthesized by enzyme-independent synthetic routes. A general solvent system consisting of a mixture of acetone-d6 and methanol-d4 (97:3; v/v) was found to provide a good solubilizing capacity and excellent hydrogen-1 NMR (1H-NMR) peak resolution of various PEth homologues. Analytical differentiation of PEth from the corresponding RPI-PEth by carbon-13 NMR (13C-NMR) was demonstrated by comparison of the 13C-NMR signals of the carbonyl groups, the allylic positions, and of the β-carbons. An exemplary stable long-term room temperature, DMSO-d6-based, and proton-sensitive quantitative nuclear magnetic resonance (1H-qNMR) independently quantified calibrator comprising PEth-16:0/18:1 for liquid chromatography (tandem) mass spectrometry (LC-MS/MS) analytical applications were prepared by employment of sodium dodecyl sulfate (SDS) as a solubilizing additive. In summary, novel hypothetically occurring PEth derivatives, e.g., RPI-PEths, have been independently synthesized with regio- and stereochemical control. Use of polar organic solvents, e.g., mixtures of acetone-d6 and methanol-d4 or DMSO-d6, improves spectral line shapes as compared to traditional hydrophobic solvents and allow for analytical differentiation between closely related PEth derivatives, as well as LC-MS/MS-independent concentration determination of dissolved single species by employment of 1H-qNMR.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Isaksson A, Walther L, Hansson T, Andersson A, Alling C (2011) Phosphatidylethanol in blood (B-Peth): a marker for alcohol use and abuse. Drug Test Anal 3:195–200

    CAS  Article  Google Scholar 

  2. 2.

    Gnann H, Engelmann C, Skopp G, Winkler M, Auwaerter V, Dresen S, Ferreiros N, Wurst FM, Weinmann W (2010) Identification of 48 homologues of phosphatidylethanol in blood by LC-ESI-MS/MS. Anal Bioanal Chem 396:2415–2423

    CAS  Article  Google Scholar 

  3. 3.

    Nalesso A, Viel G, Cecchetto G, Mioni D, Pessa G, Favretto D, Davide Ferrara S (2011) Quantitative profiling of phosphatidylethanol molecular species in human blood by liquid chromatography high resolution mass spectrometry. J Chromatogr A 1218:8423–8431

    CAS  Article  Google Scholar 

  4. 4.

    Zheng Y-F, Beck O, Helander A (2011) Method development for routine liquid chromatography-mass spectrometry measurement of the alcohol biomarker phosphatidylethanol (PEth) in blood. Clin Chim Acta 412:1428–1435

    CAS  Article  Google Scholar 

  5. 5.

    Tolonen A, Lehto TM, Hannuksela ML, Savolainen MJ (2005) A method for determination of phosphatidylethanol from high density lipoproteins by reversed-phase HPLC with TOF-MS detection. Anal Biochem 341:83–88

    CAS  Article  Google Scholar 

  6. 6.

    Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A (2003) Charting molecular composition of phosphatidylcholins by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res 44:2181–2192

    CAS  Article  Google Scholar 

  7. 7.

    Helander A, Zheng Y (2009) Molecular species of the alcohol biomarker phosphatidylethanol in human blood measured by LC-MS. Clin Chem 55:1395–1405

    CAS  Article  Google Scholar 

  8. 8.

    Vernooij EAAM, Brouwers JFHM, Kettenes-Van den Bosch J, Jantina Crommelin DJA (2002) RP-HPLC/ESI MS determination of acyl chain positions in phospholipids. J Sep Sci 25:285–289

    CAS  Article  Google Scholar 

  9. 9.

    Xia J, Hui Y-Z (1999) Synthesis of a small library of mixed-acid phospholipids from d-mannitol as a homochiral starting material. Chem Pharm Bull 47:1659–1663

    CAS  Article  Google Scholar 

  10. 10.

    Abe M, Kitsuda S, Ohyama S, Koubori S, Murai M, Miyoshi H (2010) Concise procedure for the synthesis of cardiolipins having different fatty acid combinations. Tetrahedron Lett 51:2071–2073

    CAS  Article  Google Scholar 

  11. 11.

    Hebert N, Beck A, Lennox RB, Just G (1992) A new reagent for the removal of the 4-methoxybenzyl ether: application to the synthesis of unusual macrocyclic and bolaform phosphatidylcholines. J Org Chem 57:1777–1783

    CAS  Article  Google Scholar 

  12. 12.

    Sato R, Itabashi Y, Fujishima H, Okuyama H, Kuksis A (2004) Simple synthesis of diastereomerically pure phosphatidylglycerols by phospholipase d-catalyzed transphosphatidylation. Lipids 39:1025–1030

    CAS  Article  Google Scholar 

  13. 13.

    Martin SF, Hergenrother PJ (1998) Enzymic synthesis of a modified phospholipid and its evaluation as a substrate for B. cereus phospholipase C. Bioorg Med Chem Lett 8:593–596

    CAS  Article  Google Scholar 

  14. 14.

    Petersen G, Pedersen AH, Pickering DS, Begtrup M, Hansen HS (2009) Effect of synthetic and natural phospholipids on N-acylphosphatidylethanolamine-hydrolyzing phospholipase D activity. Chem Phys Lipids 162:53–61

    CAS  Article  Google Scholar 

  15. 15.

    Goldring WPD, Jubeli E, Downs RA, Johnston AJS, Abdul Khalique N, Raju L, Liji W, Wafadari D, Pungente MD (2012) Novel macrocyclic and acyclic cationic lipids for gene transfer: synthesis and in vitro evaluation. Bioorg Med Chem Lett 22:4686–4692

    CAS  Article  Google Scholar 

  16. 16.

    Alcaraz M-L, Peng L, Klotz P, Goeldner M (1996) J Org Chem 61:192–201

    CAS  Article  Google Scholar 

  17. 17.

    Takai K, Takagi T, Baba T, Kanamori T (2008) Synthesis and monolayer properties of double-chained phosphatidylcholines containing perfluoroalkyl groups of different length. J Fluor Chem 129:686–690

    CAS  Article  Google Scholar 

  18. 18.

    Srisiri W, Lee Y-S, O’Brien DF (1995) Chemical synthesis of a polymerizable bis-substituted phosphoethanolamine. Tetrahedron Lett 36:8945–8948

    CAS  Article  Google Scholar 

  19. 19.

    Kihara M, Xu L, Konishi K, Kida K, Nagao Y, Kobayashi S, Shingu T (1994) Isolation and structure elucidation of a novel alkaloid, incartine, a supposed biosynthetic intermediate, from flowers of Lycoris incarnate. Chem Pharm Bull 42:289–292

    CAS  Article  Google Scholar 

  20. 20.

    Willmann J, Thiele H, Leibfritz D (2011) Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. J Biomed Biotechnol 2011:1–8

    Article  Google Scholar 

  21. 21.

    Griffiths L, Irving AM (1998) Assay by nuclear magnetic resonance spectroscopy: quantification limits. Analyst 123:1061–1068

    CAS  Article  Google Scholar 

  22. 22.

    Wells RJ, Cheung J, Hook JM (2004) Dimethylsulfone as a universal standard for analysis of organics by qNMR. Accred Qual Assur 9:450–456

    CAS  Article  Google Scholar 

  23. 23.

    Lehnhardt F-G, Rohn G, Ernestus R-I, Grune M, Hoehn M (2001) 1H- and 31P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed 14:307–317

    CAS  Article  Google Scholar 

  24. 24.

    Vyssotski M, MacKenzie A, Scott D (2009) TLC and 31P-NMR analysis of low polarity phospholipids. Lipids 44:381–389

    CAS  Article  Google Scholar 

  25. 25.

    McEwan AG, Hanson V, Bailey S (1998) Dimethyl sulfoxide reductase from purple phototrophic bacteria: structures and mechanism(s). Biochem Soc Trans 26:390–396

    CAS  Google Scholar 

Download references


We are grateful to Innovator Skåne AB for the provision of laboratory facilities and for major sponsoring, to Can Slivo for excellent help with the resynthesis of early intermediates, to Dr. Anders Blomgren and the staff at the analytical laboratories of Skåne University Hospital for LC-MS/MS quantification of calibrators, to Dr. Johan Evenäs at Read Glead Discovery AB for the collection and processing of 1H-qNMR spectra, and to Dr. Ulf Annby for proofreading the manuscript.

Author information



Corresponding author

Correspondence to David Wensbo Posaric.

Electronic supplementary material

Below is the link to the electronic supplementary material.


PDF 515 kb

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wensbo Posaric, D., Andersson, A., Bergquist, K. et al. Differentiation and quantification of synthetic phosphatidylethanol (PEth) homologues by 1H- and 13C-NMR in polar organic solvents. Anal Bioanal Chem 406, 4735–4744 (2014). https://doi.org/10.1007/s00216-014-7826-4

Download citation


  • qNMR
  • LC-MS/MS
  • Analytical reference
  • Phospholipids
  • Positional isomers
  • Lyso-PEth