Analytical and Bioanalytical Chemistry

, Volume 406, Issue 13, pp 3059–3067 | Cite as

A real-time characterization method to rapidly optimize molecular beacon signal for sensitive nucleic acids analysis

Research Paper

Abstract

This research demonstrates an integrated microfluidic titration assay to characterize the cation concentrations in working buffer to rapidly optimize the signal-to-noise ratio (SNR) of molecular beacons (MBs). The “Microfluidic Droplet Array Titration Assay" (MiDATA) integrated the functions of sample dilution, sample loading, sample mixing, fluorescence analysis, and re-confirmation functions all together in a one-step process. It allows experimentalists to arbitrarily change sample concentration and acquire SNR measurements instantaneously. MiDATA greatly reduces sample dilution time, number of samples needed, sample consumption, and the total titration time. The maximum SNR of molecular beacons is achieved by optimizing the concentrations of the monovalent and divalent cation (i.e., Mg2+ and K+) of the working buffer. MiDATA platform is able to reduce the total consumed reagents to less than 50 μL, and decrease the assay time to less than 30 min. The SNR of the designated MB is increased from 20 to 126 (i.e., enhanced the signal 630 %) using the optimal concentration of MgCl2 and KCl determined by MiDATA. This novel microfluidics-based titration method is not only useful for SNR optimization of molecular beacons but it also can be a general method for a wide range of fluorescence resonance energy transfer (FRET)-based molecular probes.

Figure

The concentration of monovalent (K+) and divalent (Mg2+) cation in working buffer influences the signal-to-noise ratio (SNR) of molecular beacon (MB). Thus, optimizing the cationic concentrations in working buffer is necessary to achieve optimal SNR of MB assays for sensitive nucleic acids analysis.

Keywords

Molecular beacons FRET Titration Lab-on-a-chip Microfluidics 

Supplementary material

216_2014_7721_MOESM1_ESM.pdf (191 kb)
ESM 1(PDF 190 kb)

References

  1. 1.
    Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16(1):49–53CrossRefGoogle Scholar
  2. 2.
    Marras SAE, Kramer FR, Tyagi S (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal Biomol Eng 14(5–6):151–156CrossRefGoogle Scholar
  3. 3.
    Vet JAM, Majithia AR, Marras SAE, Tyagi S, Dube S, Poiesz BJ, Kramer FR (1999) Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc Natl Acad Sci U S A 96(11):6394–6399CrossRefGoogle Scholar
  4. 4.
    Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genom Hum Genet 2:235–258CrossRefGoogle Scholar
  5. 5.
    Syvanen AC (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet 2(12):930–942CrossRefGoogle Scholar
  6. 6.
    Fang XH, Li JJ, Tan WH (2000) Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. Anal Chem 72(14):3280–3285CrossRefGoogle Scholar
  7. 7.
    Tung CH, Mahmood U, Bredow S, Weissleder R (2000) In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60(17):4953–4958Google Scholar
  8. 8.
    Chen W, Martinez G, Mulchandani A (2000) Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. Anal Biochem 280(1):166–172CrossRefGoogle Scholar
  9. 9.
    Vogelstein B, Kinzler KW (1999) Digital PCR. Proc Natl Acad Sci U S A 96(16):9236–9241CrossRefGoogle Scholar
  10. 10.
    Sokol DL, Zhang XL, Lu PZ, Gewitz AM (1998) Real time detection of DNA RNA hybridization in living cells. Proc Natl Acad Sci U S A 95(20):11538–11543CrossRefGoogle Scholar
  11. 11.
    Matsuo T (1998) In situ vizualization of messenger RNA for basic fibroblast growth factor in living cells. Biochim Biophys Acta Gen Subj 1379(2):178–184CrossRefGoogle Scholar
  12. 12.
    Fang XH, Mi YM, Li JWJ, Beck T, Schuster S, Tan WH (2002) Molecular beacons–fluorogenic probes for living cell study. Cell Biochem Biophys 37(2):71–81CrossRefGoogle Scholar
  13. 13.
    Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000) Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J 78(6):3260–3274CrossRefGoogle Scholar
  14. 14.
    Yao G, Fang XH, Yokota H, Yanagida T, Tan WH (2003) Monitoring molecular beacon DNA probe hybridization at the single-molecule level. Chem Eur J 9(22):5686–5692CrossRefGoogle Scholar
  15. 15.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308CrossRefGoogle Scholar
  16. 16.
    Stryer L, Haugland RP (1967) Energy transfer—a spectroscopic ruler. Proc Natl Acad Sci USA 58(2):719–726Google Scholar
  17. 17.
    Deniz AA, Dahan M, Grunwell JR, Ha TJ, Faulhaber AE, Chemla DS, Weiss S, Schultz PG (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proc Natl Acad Sci U S A 96(7):3670–3675CrossRefGoogle Scholar
  18. 18.
    Stryer L (1978) Fluorescence energy-transfer as a spectroscopic ruler. Ann Rev Biochem 47:819–846CrossRefGoogle Scholar
  19. 19.
    Tan WH, Wang KM, Drake TJ (2004) Molecular beacons. Curr Opin Chem Biol 8(5):547–553CrossRefGoogle Scholar
  20. 20.
    Hardin CC, Watson T, Corregan M, Bailey C (1992) Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of D(Cgcg3gcg). Biochemistry 31(3):833–841CrossRefGoogle Scholar
  21. 21.
    Williamson JR (1994) G-quartet structures in telomeric DNA. Ann Rev Biophys Biomol Struc 23:703–730CrossRefGoogle Scholar
  22. 22.
    Tsourkas A, Behlke MA, Bao G (2002) Structure–function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Res 30(19):4208–4215CrossRefGoogle Scholar
  23. 23.
    Tsourkas A, Behlke MA, Rose SD, Bao G (2003) Hybridization kinetics and thermodynamics of molecular beacons. Nucleic Acids Res 31(4):1319–1330CrossRefGoogle Scholar
  24. 24.
    Bonnet G, Krichevsky O, Libchaber A (1998) Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci U S A 95(15):8602–8606CrossRefGoogle Scholar
  25. 25.
    Bonnet G, Tyagi S, Libchaber A, Kramer FR (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A 96(11):6171–6176CrossRefGoogle Scholar
  26. 26.
    Yao G, Tan WH (2004) Molecular beacon-based array for sensitive DNA analysis. Anal Biochem 331(2):216–223CrossRefGoogle Scholar
  27. 27.
    Gao Y, Wolf LK, Georgiadis RM (2006) Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res 34(11):3370–3377CrossRefGoogle Scholar
  28. 28.
    Du H, Strohsahl CM, Camera J, Miller BL, Krauss TD (2005) Sensitivity and specificity of metal surface-immobilized "molecular beacon" biosensors. J Am Chem Soc 127(21):7932–7940CrossRefGoogle Scholar
  29. 29.
    Fang XH, Liu XJ, Schuster S, Tan WH (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. J Am Chem Soc 121(12):2921–2922CrossRefGoogle Scholar
  30. 30.
    Reynolds O (1883) An experimental investigation of the circumstances which determines whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil Trans R Soc 174:935–982CrossRefGoogle Scholar
  31. 31.
    Kenis PJA, Ismagilov RF, Whitesides GM (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285(5424):83–85CrossRefGoogle Scholar
  32. 32.
    Liu RH, Yang JN, Pindera MZ, Athavale M, Grodzinski P (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157CrossRefGoogle Scholar
  33. 33.
    Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651CrossRefGoogle Scholar
  34. 34.
    Hsieh ATH, Hori N, Massoudi R, Pan PJH, Sasaki H, Lin YA, Lee AP (2009) Nonviral gene vector formation in monodispersed picolitre incubator for consistent gene delivery. Lab Chip 9(18):2638–2643CrossRefGoogle Scholar
  35. 35.
    Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133CrossRefGoogle Scholar
  36. 36.
    Liau A, Karnik R, Majumdar A, Cate JHD (2005) Mixing crowded biological solutions in milliseconds. Anal Chem 77(23):7618–7625. doi:10.1021/Ac050827h CrossRefGoogle Scholar
  37. 37.
    Hsieh ATH, Pan PJH, Lee AP (2009) Rapid label-free DNA analysis in picoliter microfluidic droplets using FRET probes. Microfluidics Nanofluidics 6(3):391–401CrossRefGoogle Scholar
  38. 38.
    Song H, Ismagilov RF (2003) Millisecond kinetics on a microfluidic chip using nanoliters of reagents. J Am Chem Soc 125(47):14613–14619CrossRefGoogle Scholar
  39. 39.
    Muradoglu M, Stone HA (2005) Mixing in a drop moving through a serpentine channel: a computational study. Phys Fluids 17(7):073305–073309Google Scholar
  40. 40.
    Gee KR, Brown KA, Chen WNU, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca2 + -indicator dyes. Cell Calcium 27(2):97–106CrossRefGoogle Scholar
  41. 41.
    Shattuckeidens D, Mcclure M, Simard J, Labrie F, Narod S, Couch F, Hoskins K, Weber B, Castilla L, Erdos M, Brody L, Friedman L, Ostermeyer E, Szabo C, King MC, Jhanwar S, Offit K, Norton L, Gilewski T, Lubin M, Osborne M, Black D, Boyd M, Steel M, Ingles S, Haile R, Lindblom A, Olsson H, Borg A, Bishop DT, Solomon E, Radice P, Spatti G, Gayther S, Ponder B, Warren W, Stratton M, Liu QY, Fujimura F, Lewis C, Skolnick MH, Goldgar DE (1995) A collaborative survey of 80 mutations in the Brca1 breast cancer and ovarian cancer susceptibility gene— implications for presymptomatic testing and screening. JAMA 273(7):535–541CrossRefGoogle Scholar
  42. 42.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analy Chem 70(23):4974–4984CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of California, IrvineIrvineUSA

Personalised recommendations