Analytical and Bioanalytical Chemistry

, Volume 406, Issue 12, pp 2827–2839 | Cite as

Lipidomic analysis of polyunsaturated fatty acids and their oxygenated metabolites in plasma by solid-phase extraction followed by LC-MS

  • Gabriel Dasilva
  • Manuel Pazos
  • José M. Gallardo
  • Isaac Rodríguez
  • Rafael Cela
  • Isabel Medina
Research Paper

Abstract

The present work describes the development of a robust and sensitive targeted analysis platform for the simultaneous quantification in blood plasma of lipid oxygenated mediators and fatty acids using solid-phase extraction (SPE) and high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). The concurrent analysis of these lipid mediators is challenging because of their instability, differences in solubility, and the frequent occurrence of isobaric forms with similar fragmentation patterns. Results demonstrated that the reduction of SPE temperature to 4 °C is a critical parameter for preserving the hydroperoxy derivatives. Polymeric HLB cartridges increased 40–50 % ARA, EPA, and DHA sensitivity compared to C18 sorbent and also provided higher global performance for most hydroxides and other oxidation products. The proposed method for the two tested mass analyzers yields high sensitivity, good linearity, and reproducibility, with detection limits ranging 0.002–7 ng/mL and global recoveries as high as 85–112 %. However, the additional advantage of the linear ion trap (LIT) mass analyzer working in full scan product ion mode, compared to the triple quadrupole (QqQ) operating in multiple reaction monitoring (MRM), should be noted: the full scan product ion mode provides the full fragmentation spectra of compounds that allowed the discrimination of coeluting isomers and false positive identifications without additional chromatography development. The proposed lipidomic procedure demonstrates a confident, simple, and sensitive method to profile in plasma a wide range of lipid eicosanoid and docosanoid mediators, including innovatively the analysis of hydroperoxy congeners and nonoxidized PUFA precursors.

Keywords

Oxygenated lipid mediators Solid-phase extraction Liquid chromatography Mass spectrometry Triple quadrupole Ion trap 

Supplementary material

216_2014_7701_MOESM1_ESM.pdf (757 kb)
ESM 1(PDF 757 kb)

References

  1. 1.
    Frankel EN (1998) Lipid oxidation. The Oily Press LTD, West Ferry, Dundee, ScotlandGoogle Scholar
  2. 2.
    Mathews CK, Van Holde KE, Ahern KG (2003) In: Capella I (ed) Biochemistry, 3rd edn. Addison Wesley, OregonGoogle Scholar
  3. 3.
    Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A (2008) Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 22(2):75–83. doi:10.1002/rcm.3331 CrossRefGoogle Scholar
  4. 4.
    Nithipatikom K, DiCamelli R, Kohler S, Gumina R, Falck J, Campbell W, Gross G (2001) Determination of cytochrome P450 metabolites of arachidonic acid in coronary venous plasma during ischemia and reperfusion in dogs. Anal Biochem 292(1):115–124. doi:10.1006/abio.2001.5044 CrossRefGoogle Scholar
  5. 5.
    Yin H, Brooks JD, Gao L, Porter NA, Morrow JD (2007) Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J Biol Chem 282(41):29890–29901. doi:10.1074/jbc.M703108200 CrossRefGoogle Scholar
  6. 6.
    Kamal-Eldin A, Yanishlieva N (2002) N-3 fatty acids for human nutrition: stability considerations. Eur J Lipid Sci Technol 104(12):825–836. doi:10.1002/1438-9312(200212)104:12<825::AID-EJLT825>3.0.CO;2-N CrossRefGoogle Scholar
  7. 7.
    Gao L, Yin H, Milne G, Porter N, Morrow J (2006) Formation of F-ring isoprostane-like compounds (F-3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 281(20):14092–14099. doi:10.1074/jbc.M601035200 CrossRefGoogle Scholar
  8. 8.
    Massey KA, Nicolaou A (2011) Lipidomics of polyunsaturated-fatty-acid-derived oxygenated metabolites. Biochem Soc Trans 39(5):1240–1246. doi:10.1042/BST0391240 CrossRefGoogle Scholar
  9. 9.
    Sun Y, Oh SF, Uddin J, Yang R, Gotlinger K, Campbell E, Colgan SP, Petasis NA, Serhan CN (2007) Resolvin D1 and its aspirin-triggered 17R epimer—stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 282(13):9323–9334. doi:10.1074/jbc.M609212200 CrossRefGoogle Scholar
  10. 10.
    Min L, Li Y, Yu B, Huwei L (2014) Analytical methods in lipidomics and their applications. Anal Chem 86(1):161CrossRefGoogle Scholar
  11. 11.
    Davi G, Alessandrini P, Mezzetti A, Minotti G, Bucciarelli T, Costantini F, Cipollone F, Bon G, Ciabattoni G, Patrono C (1997) In vivo formation of 8-epi-prostaglandin F-2 alpha is increased in hypercholesterolemia. Arterioscler Thromb Vasc Biol 17(11):3230–3235CrossRefGoogle Scholar
  12. 12.
    Pratico D, Iuliano L, Basili S, Ferro D, Camastra C, Cordova C, FitzGerald G, Violi F (1998) Enhanced lipid peroxidation in hepatic cirrhosis. J Invest Med 46(2):51–57Google Scholar
  13. 13.
    Stein C, Tanner S, Awad J, Roberts L, Morrow J (1996) Evidence of free radical-mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheum 39(7):1146–1150. doi:10.1002/art.1780390711 CrossRefGoogle Scholar
  14. 14.
    Delanty N, Reilly M, Pratico D, Lawson J, McCarthy J, Wood A, Ohnishi S, Fitzgerald D, FitzGerald G (1997) 8-Epi PGF(2 alpha) generation during coronary reperfusion—a potential quantitative marker of oxidant stress in vivo. Circulation 95(11):2492–2499CrossRefGoogle Scholar
  15. 15.
    Gopaul N, Anggard E, Mallet A, Betteridge D, Wolff S, Nourooz-Zadeh J (1995) Plasma 8-epi-Pgf(2-alpha) levels are elevated in individuals with non-insulin-dependent diabetes mellitus. FEBS Lett 368(2):225–229. doi:10.1016/0014-5793(95)00649-T CrossRefGoogle Scholar
  16. 16.
    Cavalca V, Minardi F, Scurati S, Guidugli F, Squellerio I, Veglia F, Dainese L, Guarino A, Tremoli E, Caruso D (2010) Simultaneous quantification of 8-iso-prostaglandin-F-2 alpha and 11-dehydro thromboxane B-2 in human urine by liquid chromatography-tandem mass spectrometry. Anal Biochem 397(2):168–174. doi:10.1016/j.ab.2009.10.014 CrossRefGoogle Scholar
  17. 17.
    Walter M, Blumberg J, Dolnikowski G, Handelman G (2000) Streamlined F-2-isoprostane analysis in plasma and urine with high-performance liquid chromatography and gas chromatography/mass spectroscopy. Anal Biochem 280(1):73–79. doi:10.1006/abio.1999.4476 CrossRefGoogle Scholar
  18. 18.
    Waddington E, Sienuarine K, Puddey I, Croft K (2001) Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal Biochem 292(2):234–244. doi:10.1006/abio.2001.5075 CrossRefGoogle Scholar
  19. 19.
    Kelly L, Grehan B, Della Chiesa A, O’Mara SM, Downer E, Sahyoun G, Massey KA, Nicolaou A, Lynch MA (2011) The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiol Aging 32(12):2318.e1–2318.e15. doi:10.1016/j.neurobiolaging.2010.04.001 CrossRefGoogle Scholar
  20. 20.
    Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, Petasis NA (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 176(3):1848–1859CrossRefGoogle Scholar
  21. 21.
    Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN (2005) Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 201(5):713–722. doi:10.1084/jem.20042031 CrossRefGoogle Scholar
  22. 22.
    Lee CH (2012) Resolvins as new fascinating drug candidates for inflammatory diseases. Arch Pharm Res 35(1):3–7. doi:10.1007/s12272-012-0121-z CrossRefGoogle Scholar
  23. 23.
    Masoodi M, Eiden M, Koulman A, Spaner D, Volmer DA (2010) Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Anal Chem 82(19):8176–8185. doi:10.1021/ac1015563 CrossRefGoogle Scholar
  24. 24.
    Masoodi M, Nicolaou A (2006) Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 20(20):3023–3029. doi:10.1002/rcm.2697 CrossRefGoogle Scholar
  25. 25.
    Kretschmer A, Giera M, Wijtmans M, de Vries L, Lingeman H, Irth H, Niessen WMA (2011) Derivatization of carboxylic acids with 4-APEBA for detection by positive-ion LC-ESI–MS(/MS) applied for the analysis of prostanoids and NSAID in urine. J Chromatogr B 879(17–18):1393–1401. doi:10.1016/j.jchromb.2010.11.028 CrossRefGoogle Scholar
  26. 26.
    Zhang H, Il’yasova D, Sztaray J, Young SP, Wang F, Millington DS (2010) Quantification of the oxidative damage biomarker 2,3-dinor-8-isoprostaglandin-F-2 alpha in human urine using liquid chromatography-tandem mass spectrometry. Anal Biochem 399(2):302–304. doi:10.1016/j.ab.2009.12.024 CrossRefGoogle Scholar
  27. 27.
    Yang J, Schmelzer K, Georgi K, Hammock BD (2009) Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 81(19):8085–8093. doi:10.1021/ac901282n CrossRefGoogle Scholar
  28. 28.
    Medina S, Dominguez-Perles R, Gil JI, Ferreres F, Garcia-Viguera C, Martinez-Sanz JM, Gil-Izquierdo A (2012) A ultra-pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 hour values in healthy volunteers in a controlled constant diet. Rapid Commun Mass Spectrom 26(10):1249–1257. doi:10.1002/rcm.6224 CrossRefGoogle Scholar
  29. 29.
    Deems R, Buczynski MW, Bowers-Gentry R, Harkewicz R, Dennis EA (2007) Detection and quantitation of eicosanoids via high performance liquid chromatography-electrospray ionization-mass spectrometry. Lipidomics Bioact Lipids Mass-Spectrom-Based Lipid Anal 432:59–82. doi:10.1016/S0076-6879(07)32003-X CrossRefGoogle Scholar
  30. 30.
    Taylor AW, Bruno RS, Traber MG (2008) Women and smokers have elevated urinary F(2)-isoprostane metabolites: a novel extraction and LC-MS methodology. Lipids 43(10):925–936. doi:10.1007/s11745-008-3222-1 CrossRefGoogle Scholar
  31. 31.
    Nourooz-Zadeh J (2008) Key issues in F-2-isoprostane analysis. Biochem Soc Trans 36(Pt 5):1060–1065. doi:10.1042/BST0361060 CrossRefGoogle Scholar
  32. 32.
    Levandi T, Pussa T, Vaher M, Toomik P, Kaljurand M (2009) Oxidation products of free polyunsaturated fatty acids in wheat varieties. Eur J Lipid Sci Technol 111(7):715–722. doi:10.1002/ejlt.200800286 CrossRefGoogle Scholar
  33. 33.
    Maskrey BH, O’Donnell VB (2008) Analysis of eicosanoids and related lipid mediators using mass spectrometry. Biochem Soc Trans 36(Pt 5):1055–1059. doi:10.1042/BST0361055 CrossRefGoogle Scholar
  34. 34.
    Kortz L, Geyer R, Ludwig U, Planert M, Bruegel M, Leichtle A, Fiedler GM, Thiery J, Ceglarek U (2009) Simultaneous eicosanoid profiling and identification by liquid chromatography and hybrid triple quadrupole-linear ion trap mass spectrometry for metabolomic studies in human plasma. Laboratoriumsmedizin-J Lab Med 33(6):341–348. doi:10.1515/JLM.2009.057 CrossRefGoogle Scholar
  35. 35.
    Dickinson J, Murphy R (2002) Mass spectrometric analysis of leukotriene A(4) and other chemically reactive metabolites of arachidonic acid. J Am Soc Mass Spectrom 13(10):1227–1234. doi:10.1016/S1044-0305(02)00456-7 CrossRefGoogle Scholar
  36. 36.
    Li M, Feng B, Liang Y, Zhang W, Bai Y, Tang W, Wang T, Liu H (2013) Lipid profiling of human plasma from peritoneal dialysis patients using an improved 2D (NP/RP) LC-QToF MS method. Anal Bioanal Chem 405(21):6629–6638. doi:10.1007/s00216-013-7109-5 CrossRefGoogle Scholar
  37. 37.
    Massey KA, Nicolaou A (2013) Lipidomics of oxidized polyunsaturated fatty acids. Free Radic Biol Med 59:45–55. doi:10.1016/j.freeradbiomed.2012.08.565 CrossRefGoogle Scholar
  38. 38.
    Margalit A, Duffin K, Isakson P (1996) Rapid quantitation of a large scope of eicosanoids in two models of inflammation: development of an electrospray and tandem mass spectrometry method and application to biological studies. Anal Biochem 235(1):73–81. doi:10.1006/abio.1996.0093 CrossRefGoogle Scholar
  39. 39.
    Ferreiro-Vera C, Mata-Granados JM, Priego-Capote F, Quesada-Gomez JM, Luque de Castro MD (2011) Automated targeting analysis of eicosanoid inflammation biomarkers in human serum and in the exometabolome of stem cells by SPE-LC-MS/MS. Anal Bioanal Chem 399(3):1093–1103. doi:10.1007/s00216-010-4400-6 CrossRefGoogle Scholar
  40. 40.
    Durn JH, Marshall KM, Farrar D, O’Donovan P, Scally AJ, Woodward DF, Nicolaou A (2010) Lipidomic analysis reveals prostanoid profiles in human term pregnant myometrium. Prostaglandins Leukot Essent Fat Acids 82(1):21–26. doi:10.1016/j.plefa.2009.11.002 CrossRefGoogle Scholar
  41. 41.
    McDaniel JC, Massey K, Nicolaou A (2011) Fish oil supplementation alters levels of lipid mediators of inflammation in microenvironment of acute human wounds. Wound Repair Regen 19(2):189–200. doi:10.1111/j.1524-475X.2010.00659.x CrossRefGoogle Scholar
  42. 42.
    Jessome L, Volmer D (2006) Ion suppression: a major concern in mass spectrometry. Lc Gc N Am 24(5):498Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gabriel Dasilva
    • 1
  • Manuel Pazos
    • 1
  • José M. Gallardo
    • 1
  • Isaac Rodríguez
    • 2
  • Rafael Cela
    • 2
  • Isabel Medina
    • 1
  1. 1.Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC)VigoSpain
  2. 2.Department of Analytical Chemistry, Nutrition and Bromatology, Research Institute for Food Analysis (I.I.A.A.)University of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations