Abstract
A production process in which the use of various types of chemicals seems to be ubiquitous makes the textile industry a growing problem regarding both public health as well as the environment. Among several substances used at each stage, the present study focuses on the quinolines, a class of compounds involved in the manufacture of dyes, some of which are skin irritants and/or classified as probable human carcinogens. A method was developed for the determination of quinoline derivatives in textile materials comprising ultrasound-assisted solvent extraction, solid phase extraction cleanup, and final analysis by gas chromatography/mass spectrometry. Quinoline and ten quinoline derivatives were determined in 31 textile samples. The clothing samples, diverse in color, material, brand, country of manufacture, and price, and intended for a broad market, were purchased from different shops in Stockholm, Sweden. Quinoline, a possible human carcinogen, was found to be the most abundant compound present in almost all of the samples investigated, reaching a level of 1.9 mg in a single garment, and it was found that quinoline and its derivatives were mainly correlated to polyester material. This study points out the importance of screening textiles with nontarget analysis to investigate the presence of chemicals in an unbiased manner. Focus should be primarily on clothing worn close to the body.
This is a preview of subscription content, log in to check access.



References
- 1.
Fransson K, Molander S (2012) Handling chemical risk information in international textile supply chains. J Environ Plan Manag 56(3):345–361
- 2.
Sartorelli P et al (1998) Prediction of percutaneous absorption from physicochemical data: a model based on data of in vitro experiments. Ann Occup Hyg 42(4):267–276
- 3.
Bos JD, Meinardi MMHM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9(3):165–169
- 4.
Karlberg A-T et al (2007) Allergic contact dermatitis––formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 21(1):53–69
- 5.
Kezic S, Nielsen JB (2009) Absorption of chemicals through compromised skin. Int Arch Occup Environ Health 82(6):677–688
- 6.
Blum A et al (1978) Children absorb tris-BP flame retardant from sleepwear: urine contains the mutagenic metabolite, 2,3-dibromopropanol. Science 201(4360):1020–1023
- 7.
Hatch KL, Maibach HI (1995) Textile dye dermatitis. J Am Acad Dermatol 32(4):631–639
- 8.
Hatch KL (1984) Chemicals and textiles: part II: dermatological problems related to finishes. Text Res J 54(11):721–732
- 9.
Lensen G et al (2007) Airborne irritant contact dermatitis and conjunctivitis after occupational exposure to chlorothalonil in textiles. Contact Dermatitis 57(3):181–186
- 10.
Cioni F et al (1999) Development of a solid phase microextraction method for detection of the use of banned azo dyes in coloured textiles and leather. Rapid Commun Mass Spectrom 13(18):1833–1837
- 11.
Lv G et al (2009) Determination of perfluorinated compounds in packaging materials and textiles using pressurized liquid extraction with gas chromatography-mass spectrometry. Anal Sci 25(3):425–429
- 12.
Zhu F et al (2009) Application of solid-phase microextraction for the determination of organophosphorus pesticides in textiles by gas chromatography with mass spectrometry. Anal Chim Acta 650(2):202–206
- 13.
Wang Y, Zeng Z, Liu M (2011) Analysis of naphthalene residues in textile samples by GC-FID using sol-gel-derived SPME fiber. J Chromatogr Sci 49(1):29–34
- 14.
Liu X et al (2014) Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US. Chemosphere 98:51–57
- 15.
Horstmann M, McLachlan MS (1995) Results of an initial survey of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) in textiles. Chemosphere 31(2):2579–2589
- 16.
Klasmeier J, McLachlan MS (1998) PCDD/Fs in textiles—part 1: a screening method for detection of octachlorodibenzo-p-dioxin and octachlorodibenzofuran. Chemosphere 36(7):1627–1635
- 17.
Klasmeier J, Mühlebach A, McLachlan MS (1999) PCDD/Fs in textiles—part II: transfer from clothing to human skin. Chemosphere 38(1):97–108
- 18.
Loos R et al (2007) LC–MS–MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere 66(4):690–699
- 19.
Wakeham SG (1979) Azaarenes in recent lake sediments. Environ Sci Technol 13(9):1118–1123
- 20.
Stedman RL (1968) Chemical composition of tobacco and tobacco smoke. Chem Rev 68(2):153–207
- 21.
Nielsen T, Clausen P, Jensen FP (1986) Determination of basic azaarenes and polynuclear aromatic hydrocarbons in airborne particulate matter by gas chromatography. Anal Chim Acta 187:223–231
- 22.
Drushel HV, Sommers AL (1966) Isolation and identification of nitrogen compounds in petroleum. Anal Chem 38(1):19–28
- 23.
Mukherjee S, Pal M (2013) Quinolines: a new hope against inflammation. Drug Discov Today 18(7–8):389–398
- 24.
Vezmar M, Georges E (2000) Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Biochem Pharmacol 59(10):1245–1252
- 25.
Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79(1):55–87
- 26.
Guy HG (1943) Agricultural uses of coal and its products. Ind Eng Chem 35(2):139–144
- 27.
P-l L et al (2012) Studies on quinoline type dyes and their characterisation studies on acrylic fabric. Color Technol 128(3):192–198
- 28.
Y-l Y et al (2006) Treatment of wastewater from dye manufacturing industry by coagulation. J Zhejiang Univ Sci A 7(2):340–344
- 29.
Oliveira DP et al (2007) Chemical characterization of a dye processing plant effluent—identification of the mutagenic components. Mutat Res 626(1–2):135–142
- 30.
La Voie EJ et al (1988) Carcinogenicity of quinoline, 4- and 8-methylquinoline and benzoquinolines in newborn mice and rats. Food Chem Toxicol 26(7):625–629
- 31.
Hirao K et al (1976) Carcinogenic activity of quinoline on rat liver. Cancer Res 36:329–335
- 32.
LaVoie EJ et al (1984) Tumor-initiating activity of quinoline and methylated quinolines on the skin of SENCAR mice. Cancer Lett 22(3):269–273
- 33.
Nagao M et al (1977) Mutagenicities of quinoline and its derivatives. Mutat Res 42:335–341
- 34.
Eisentraeger A et al (2008) Heterocyclic compounds: toxic effects using algae, daphnids, and the Salmonella/microsome test taking methodical quantitative aspects into account. Environ Toxicol Chem 27(7):1590–1596
- 35.
Birkholz DA et al (1990) Aquatic toxicology of alkyl-quinolines. Water Res 24(1):67–73
- 36.
US Environmental Protection Agency (2001) Quinoline (CASRN 91-22-5). http://www.epa.gov/iris/subst/1004.htm
- 37.
Ryberg K et al (2006) Contact allergy to textile dyes in southern Sweden. Contact Dermatitis 54(6):313–321
- 38.
Swedish Chemicals Agency (2013) Hazardous chemicals in textiles - report of a government assignment, Report 3/13. Swedish Chemicals Agency, Stockholm, p 114
Acknowledgement
Meng Hu is acknowledged for the initial work on the present study.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luongo, G., Thorsén, G. & Östman, C. Quinolines in clothing textiles—a source of human exposure and wastewater pollution?. Anal Bioanal Chem 406, 2747–2756 (2014). https://doi.org/10.1007/s00216-014-7688-9
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Quinoline
- Clothing
- Textiles
- Garment
- Gas chromatography/mass spectrometry