Skip to main content
Log in

Sensitive and selective DNA probe based on “turn-on” photoluminescence of C-dots@RGO

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, highly hydrophilic and photoluminescent sheets of reduced graphene oxide decorated with carbon dots (C-dots@RGO), methylene blue (MB), and a probe DNA have been used for the detection of DNA. The photoluminescence of C-dots@RGO is quenched by MB, which is restored in the presence of a target DNA. The combination of the C-dots@RGO, MB, and a DNA probe is selective for perfectly matched DNA over mismatched DNA, mainly because relative to single-stranded DNA, double-stranded DNA intercalates more strongly with MB, but interacts more weakly with RGO. In the presence of a target DNA, MB intercalates with the as-formed double-stranded DNA and is released from the surface of C-dots@RGO, leading to “turn-on” photoluminescence. The practicality of this assay has been validated by the determination of tumor suppressor gene BRCA1, with linearity over the concentration range from 25 to 250 nM and a limit of detection (LOD, at a signal-to-noise ratio of 3) of 14.6 nM. The C-dots@RGO probe provides higher specificity towards target DNA than towards common salts, carbohydrates, amino acids, and proteins found in real samples. Having the advantages of simplicity, cost-effectiveness, selectivity, and sensitivity, the DNA-P/C-dots@RGO–MB probe on microwells has been successfully employed for the detection of DNA, suggesting its potential for multiple analyses of DNA targets when various DNA probes are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei F, Lillehoj PB, Ho CM (2010) DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr Res 67:458–468

    Article  CAS  Google Scholar 

  2. Liu CW, Lin YW, Huang CC, Chang HT (2009) Fluorescence detection of single-nucleotide polymorphisms using a thymidine-based molecular beacon. Biosens Bioelectron 24:2541–2546

    Article  CAS  Google Scholar 

  3. Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays. Anal Chem 75:4732–4739

    Article  CAS  Google Scholar 

  4. Zhou X, Zhou J (2004) Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core−shell silica nanoparticles. Anal Chem 76:5302–5312

    Article  CAS  Google Scholar 

  5. Xu D, Huang K, Liu Z, Liu Y, Ma L (2001) Microfabricated disposable DNA sensors based on enzymatic amplification electrochemical detection. Electroanalysis 13:882–887

    Article  CAS  Google Scholar 

  6. Charrier A, Candoni N, Liachenko N, Thibaudau F (2007) 2D aggregation and selective desorption of nanoparticle probes: a new method to probe DNA mismatches and damages. Biosens Bioelectron 22:1881–1886

    Article  CAS  Google Scholar 

  7. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  8. Yamauchi F, Koyamatsu Y, Kato K, Iwata H (2006) Layer-by-layer assembly of cationic lipid and plasmid DNA onto gold surface for stent-assisted gene transfer. Biomater 27:3497–3504

    Article  CAS  Google Scholar 

  9. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  CAS  Google Scholar 

  10. Hernandez FJ, Ozalp VC (2012) Graphene and other nanomaterial-based electrochemical aptasensors. Biosens 2:1–14

    Article  CAS  Google Scholar 

  11. Feng S, Kim YK, Yang S, Chang YT (2010) Discovery of a green DNA probe for live-cell imaging. Chem Commun 46:436–438

    Article  CAS  Google Scholar 

  12. Rengarajan K, Cristol SM, Mehta M, Nickerson JM (2002) Quantifying DNA concentrations using fluorometry: a comparison of fluorophores. Mol Vis 8:416–421

    CAS  Google Scholar 

  13. Huang CC, Chen CT, Shiang YC, Lin ZH, Chang HT (2009) Synthesis of fluorescent carbohydrate-protected Au nanodots for detection of Concanavalin A and Escherichia coli. Anal Chem 81:875–882

    Article  CAS  Google Scholar 

  14. Lan GY, Chen WY, Chang HT (2011) Highly sensitive and selective label-free optical detection of mercuric ions using photon upconverting nanoparticles. Biosens Bioelectron 26:2431–2435

    Article  CAS  Google Scholar 

  15. Park CH, Louie SG (2010) Tunable excitons in biased bilayer graphene. Nano Lett 10:426–431

    Article  CAS  Google Scholar 

  16. Lee KK, Deng S, Fan HM, Mhaisalkar S, Tan HR, Tok ES, Loh KP, Chin WS, Sow CH (2012) α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4:2958–2961

    Article  CAS  Google Scholar 

  17. Stampfer C, Schurtenberger E, Molitor F, Guttinger J, Ihn T, Ensslin K (2008) Tunable graphene single electron transistor. Nano Lett 8:2378–2383

    Article  CAS  Google Scholar 

  18. Wang P, Zhai YM, Wang DJ, Dong SJ (2011) Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale 3:1640–1645

    Article  CAS  Google Scholar 

  19. Jiang GX, Susha AS, Lutich AA, Stefani FD, Feldmann J, Rogach AL (2009) Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 3:4127–4131

    Article  CAS  Google Scholar 

  20. Cui L, Lin XY, Lin NH, Song YL, Zhu Z, Chen X, Yang CYJ (2012) Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Commun 48:194–196

    Article  CAS  Google Scholar 

  21. Hsu PC, Shih ZY, Lee CH, Chang HT (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14:917–920

    Article  CAS  Google Scholar 

  22. Hsu PC, Chang HT (2012) Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun 48:3984–3986

    Article  CAS  Google Scholar 

  23. Wang CI, Periasamy AP, Chang HT (2013) Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine. Anal Chem 85:3263–3270

    Article  CAS  Google Scholar 

  24. Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24:2137–2150

    Article  Google Scholar 

  25. Drost R, Jonkers J (2013) Opportunities and hurdles in the treatment of BRCA1-related, breast cancer. Oncogene. doi:10.1038/onc.2013.329

  26. Sun YP, Zhou B, Lin Y, Wang W, Shiral Fernando KA, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Monica Veca L, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  27. Shen JS, Yu T, Xie JW, Jiang YB (2009) Photoluminescence of CdTe nanocrystals modulated by methylene blue and DNA. A label-free luminescent signaling nanohybrid platform. Phys Chem Chem Phys 11:5062–5069

    Article  CAS  Google Scholar 

  28. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun YP (2009) Photoinduced electron transfers with carbon dots. Chem Commun 25:3774–3776

    Article  Google Scholar 

  29. Zhang Z, Wang X, Wang Y, Yang X (2010) Distinction of single-base mismatches in duplex DNA using methylene blue as optical indicator. Analyst 135:2960–2964

    Article  CAS  Google Scholar 

  30. Chen JR, Jiao XX, Luo HQ, Li NB (2013) Probe-label-free electrochemical aptasensor based on methylene blue-anchored graphene oxide amplification. J Mater Chem B 1:861–864

    Article  CAS  Google Scholar 

  31. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    Article  CAS  Google Scholar 

  32. Bai W, Zheng H, Long Y, Mao X, Gao M, Zhang L (2011) A carbon dots-based fluorescence turn-on method for DNA determination. Anal Sci 27:243–246

    Article  CAS  Google Scholar 

  33. Pavan FA, Lima EC, Dias SLP, Mazzocato AC (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703–712

    Article  CAS  Google Scholar 

  34. Li F, Pei H, Wang L, Lu J, Gao J, Jiang B, Zhao X, Fan C (2013) Nanomaterial-based fluorescent DNA analysis: a comparative study of the quenching effects of graphene oxide, carbon nanotubes, and gold nanoparticles. Adv Funct Mater 23:4140–4148

    Article  CAS  Google Scholar 

  35. Shaheen M, Allen C, Nickoloff JA, Hromas R (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117:6074–6082

    Article  CAS  Google Scholar 

  36. Stoughton RB (2005) Applications of DNA microarrays in biology. Annu Rev Biochem 74:53–82

    Article  CAS  Google Scholar 

  37. Blotta I, Prestinaci F, Mirante S, Cantafora A (2005) Quantitative assay of total dsDNA with PicoGreen reagent and real-time fluorescent detection. Ann Ist Super Sanita 41:119–123

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council of Taiwan under contract 101-2113-M-002-002-MY3. A. P. Periasamy thanks the National Taiwan University for the award of a postdoctoral fellowship in the Department of Chemistry, National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Tsung Chang.

Additional information

Published in the topical collection Graphene in Analytics with guest editors Martin Pumera, Ronen Polsky, and Craig Banks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 913 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CI., Wu, WC., Periasamy, A.P. et al. Sensitive and selective DNA probe based on “turn-on” photoluminescence of C-dots@RGO. Anal Bioanal Chem 406, 6917–6923 (2014). https://doi.org/10.1007/s00216-014-7658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7658-2

Keywords

Navigation