Skip to main content

Advertisement

Log in

High-sensitivity PCR method for detecting BRAF V600Emutations in metastatic colorectal cancer using LNA/DNA chimeras to block wild-type alleles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The response to epidermal growth factor receptor (EGFR)-targeted therapy in metastatic colorectal cancer (mCRC) is variable because of intra-tumor heterogeneity at the genetic level, and consequently, it is important to develop sensitive and selective assays to predict patient responses to therapy. Low-abundance BRAF V600E mutations are associated with poor response to treatment with EGFR inhibitors. We developed a method for the detection of BRAF V600E mutations in mCRC using real-time wild-type blocking PCR (WTB-PCR), in which a chimera composed of locked nucleic acids and DNA is incorporated to amplify the mutant allele at high efficiency while simultaneously inhibiting the amplification of wild-type alleles. Mixing experiments showed that this method is exquisitely sensitive, with detection of the mutated allele at a mutant/wild-type ratio of 1:10,000. To demonstrate the applicability of this approach for mCRC patients, we assessed the V600E mutations in 50 clinical cases of mCRC by real-time WTB-PCR. The percentage of patients with V600E mutation as determined by WTB-PCR (16 %, 8/50) was higher than by traditional PCR (10 %, 5/50), suggesting an increased sensitivity for WTB-PCR. By calculating the ΔC q for real-time traditional PCR, which amplifies all BRAF alleles, versus WTB-PCR, which selectively amplifies mutant BRAF, we demonstrated that among the V600E-positive mCRC patient samples, the percentage of BRAF DNA with the V600E mutation ranged from 0.05 to 52.32 %. In conclusion, WTB-PCR provides a rapid, simple, and low-cost method to detect trace amounts of mutated BRAF V600E gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  Google Scholar 

  2. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin D-M (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  Google Scholar 

  3. Venook A-P (2005) Epidermal growth factor receptor-targeted treatment for advanced colorectal carcinoma. Cancer 103:2435–2446

    Article  CAS  Google Scholar 

  4. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, Canon J-L, Van Laethem J-L, Maurel J, Richardson G et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664

    Article  CAS  Google Scholar 

  5. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  CAS  Google Scholar 

  6. Karapetis C-S, Khambata-Ford S, Jonker D-J, O’Callaghan C-J, Tu D, Tebbutt N-C, Simes R-J, Chalchal H, Shapiro J-D, Robitaille S et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  CAS  Google Scholar 

  7. Amado R-G, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman D-J, Juan T, Sikorski R, Suggs S, Radinsky R et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  Google Scholar 

  8. Van Cutsem E, Kohne C-H, Lang I, Folprecht G, Nowacki M-P, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29:2011–2019

    Article  CAS  Google Scholar 

  9. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras K-T, Kotoula V, Papamichael D, Laurent-Puig P et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762

    Article  CAS  Google Scholar 

  10. De Roock W, Jonker D-J, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H et al (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304:1812–1820

    Article  Google Scholar 

  11. De Roock W, Piessevaux H, De Schutter J, Janssens M, De Hertogh G, Personeni N, Biesmans B, Van Laethem J-L, Peeters M, Humblet Y et al (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol 19:508–515

    Article  Google Scholar 

  12. Rajagopalan H, Bardelli A, Lengauer C, Kinzler K-W, Vogelstein B, Velculescu V-E (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934

    Article  CAS  Google Scholar 

  13. Pentheroudakis G, Kotoula V, De Roock W, Kouvatseas G, Papakostas P, Makatsoris T, Papamichael D, Xanthakis I, Sgouros J, Televantou D et al (2013) Biomarkers of benefit from cetuximab-based therapy in metastatic colorectal cancer: interaction of EGFR ligand expression with RAS/RAF, PIK3CA genotypes. BMC Cancer 13:49

    Article  CAS  Google Scholar 

  14. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, De Dosso S, Mazzucchelli L, Frattini M, Siena S et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  CAS  Google Scholar 

  15. Troiani T, Zappavigna S, Martinelli E, Addeo S-R, Stiuso P, Ciardiello F, Caraglia M (2013) Optimizing treatment of metastatic colorectal cancer patients with anti-EGFR antibodies: overcoming the mechanisms of cancer cell resistance. Expert Opin Biol Ther 13:241–255

    Article  CAS  Google Scholar 

  16. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, Zanon C, Moroni M, Veronese S, Siena S, Bardelli A (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 67:2643–2648

    Article  CAS  Google Scholar 

  17. Wong R, Cunningham D (2008) Using predictive biomarkers to select patients with advanced colorectal cancer for treatment with epidermal growth factor receptor antibodies. J Clin Oncol 26:5668–5670

    Article  CAS  Google Scholar 

  18. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101:1308–1324

    Article  CAS  Google Scholar 

  19. Kimura T, Okamoto K, Miyamoto H, Kimura M, Kitamura S, Takenaka H, Muguruma N, Okahisa T, Aoyagi E, Kajimoto M et al (2012) Clinical benefit of high-sensitivity KRAS mutation testing in metastatic colorectal cancer treated with anti-EGFR antibody therapy. Oncol-Basel 82:298–304

    Article  CAS  Google Scholar 

  20. Mike M-G (2004) PCR-based detection of minority point mutations. Hum Mutat 23:406–412

    Article  CAS  Google Scholar 

  21. Milbury C-A, Li J, Makrigiorgos G-M (2009) PCR-based methods for the enrichment of minority alleles and mutations. Clin Chem 55:632–640

    Article  CAS  Google Scholar 

  22. Didelot A, Le Corre D, Luscan A, Cazes A, Pallier K, Emile J-F, Laurent-Puig P, Blons H (2012) Competitive allele specific TaqMan PCR for KRAS, BRAF and EGFR mutation detection in clinical formalin fixed paraffin embedded samples. Exp Mol Pathol 92:275–280

    Article  CAS  Google Scholar 

  23. Richter A, Grieu F, Carrello A, Amanuel B, Namdarian K, Rynska A, Lucas A, Michael V, Bell A, Fox S-B et al (2013) A multisite blinded study for the detection of BRAF mutations in formalin-fixed, paraffin-embedded malignant melanoma. Sci Rep 3:1659

    Article  CAS  Google Scholar 

  24. Taly V, Pekin D, Benhaim L, Kotsopoulos S-K, Le Corre D, Li X, Atochin I, Link D-R, Griffiths A-D, Pallier K et al (2013) Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 59:1722–1731

    Article  CAS  Google Scholar 

  25. Dressman D, Yan H, Traverso G, Kinzler K-W, Vogelstein B (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A 100:8817–8822

    Article  CAS  Google Scholar 

  26. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler K-W (2006) BEAMing up for detection and quantification of rare sequence variants. Nat Methods 3:95–97

    Article  CAS  Google Scholar 

  27. Diehl F, Li M, He Y, Kinzler K-W, Vogelstein B, Dressman D (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3:551–559

    Article  CAS  Google Scholar 

  28. Li J, Wang L, Mamon H, Kulke M-H, Berbeco R, Makrigiorgos G-M (2008) Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med 14:579–584

    Article  CAS  Google Scholar 

  29. Li J, Makrigiorgos G-M (2009) COLD-PCR: a new platform for highly improved mutation detection in cancer and genetic testing. Biochem Soc Trans 37:427–432

    Article  CAS  Google Scholar 

  30. Jiang W, Wang W, Fu F, Teng X, Wang H, Wang H, Teng L (2012) A more sensitive platform for the detection of low-abundance BRAF(V(6)(0)(0)E) mutations. Mol Cell Biochem 366:49–58

    Article  CAS  Google Scholar 

  31. Pinzani P, Santucci C, Mancini I, Simi L, Salvianti F, Pratesi N, Massi D, De Giorgi V, Pazzagli M, Orlando C (2011) BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin Chim Acta 412:901–905

    Article  CAS  Google Scholar 

  32. Shi C, Eshleman S-H, Jones D, Fukushima N, Hua L, Parker A-R, Yeo C-J, Hruban R-H, Goggins M-G, Eshleman J-R (2004) LigAmp for sensitive detection of single-nucleotide differences. Nat Methods 1:141–147

    Article  CAS  Google Scholar 

  33. Taube J-M, Begum S, Shi C, Eshleman J-R, Westra W-H (2009) Benign nodal nevi frequently harbor the activating V600E BRAF mutation. Am J Surg Pathol 33:568–571

    Article  Google Scholar 

  34. Huang Q, Wang G-Y, Huang J-F, Zhang B, Fu W-L (2010) High sensitive mutation analysis on KRAS gene using LNA/DNA chimeras as PCR amplification blockers of wild-type alleles. Mol Cell Probes 24:376–380

    Article  CAS  Google Scholar 

  35. Dominguez P-L, Kolodney M-S (2005) Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene 24:6830–6834

    Article  CAS  Google Scholar 

  36. Oldenburg R-P, Liu M-S, Kolodney M-S (2008) Selective amplification of rare mutations using locked nucleic acid oligonucleotides that competitively inhibit primer binding to wild-type DNA. J Invest Dermatol 128:398–402

    Article  CAS  Google Scholar 

  37. Guha M, Castellanos-Rizaldos E, Makrigiorgos G-M (2013) DISSECT method using PNA-LNA clamp improves detection of T790m mutation. PLoS One 8:e67782

    Article  CAS  Google Scholar 

  38. Luo J-D, Chan E-C, Shih C-L, Chen T-L, Liang Y, Hwang T-L, Chiou C-C (2006) Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe. Nucleic Acids Res 34:e12

    Article  CAS  Google Scholar 

  39. Oh J-E, Lim H-S, An C-H, Jeong E-G, Han J-Y, Lee S-H, Yoo N-J (2010) Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes. J Mol Diagn 12:418–424

    Article  CAS  Google Scholar 

  40. Davies H, Bignell G-R, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett M-J, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  Google Scholar 

  41. Pichler M, Balic M, Stadelmeyer E, Ausch C, Wild M, Guelly C, Bauernhofer T, Samonigg H, Hoefler G, Dandachi N (2009) Evaluation of high-resolution melting analysis as a diagnostic tool to detect the BRAF V600E mutation in colorectal tumors. J Mol Diagn 11:140–147

    Article  CAS  Google Scholar 

  42. Tan Y-H, Liu Y, Eu K-W, Ang P-W, Li W-Q, Salto-Tellez M, Iacopetta B, Soong R (2013) Detection of BRAF V600E mutation by pyrosequencing. Pathology 40:295–598

    Article  CAS  Google Scholar 

  43. Bustin S-A, Benes V, Garson J-A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M-W, Shipley G-L et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  44. Gilje B, Heikkila R, Oltedal S, Tjensvoll K, Nordgard O (2008) High-fidelity DNA polymerase enhances the sensitivity of a peptide nucleic acid clamp PCR assay for K-ras mutations. J Mol Diagn 10:325–331

    Article  CAS  Google Scholar 

  45. Dabritz J, Hanfler J, Preston R, Stieler J, Oettle H (2005) Detection of Ki-ras mutations in tissue and plasma samples of patients with pancreatic cancer using PNA-mediated PCR clamping and hybridisation probes. Br J Cancer 92:405–412

    CAS  Google Scholar 

  46. Latorra D, Arar K, Hurley J-M (2003) Design considerations and effects of LNA in PCR primers. Mol Cell Probes 17:253–259

    Article  CAS  Google Scholar 

  47. Mouritzen P, Nielsen A-T, Pfundheller H-M, Choleva Y, Kongsbak L, Moller S (2003) Single nucleotide polymorphism genotyping using locked nucleic acid (LNA). Expert Rev Mol Diagn 3:27–38

    Article  CAS  Google Scholar 

  48. Di Giusto D-A, King G-C (2004) Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays. Nucleic Acids Res 32:e32

    Article  CAS  Google Scholar 

  49. You Y, Moreira B-G, Behlke M-A, Owczarzy R (2006) Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res 34:e60

    Article  CAS  Google Scholar 

  50. Day E, Dear P-H, McCaughan F (2013) Digital PCR strategies in the development and analysis of molecular biomarkers for personalized medicine. Methods 59:101–107

    Article  CAS  Google Scholar 

  51. Huang Q, Yao C-Y, Chen B, Wang F, Huang J-F, Zhang X, Fu W-L (2006) Species-specific identification by inhibitor-controlled PCR of ruminant components contaminating industrial crude porcine heparin. Mol Cell Probes 20:250–258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National High Technology Research and Development Program of China (National 863 Program, No. 2011AA02A121 and 2013AA020204), the National Key Technology R&D Program of China (No. 2012ZX10004801-003-006), the Major Project of Military Science and Technology “12th Five-Year Plan” (No. AWS11C001), the Preferential Foundation of Science and Technology Activities for Students Studying Abroad of Chongqing (No. YuLiuZhu201201), the Scientific Research Foundation for Returned Overseas Chinese Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Ling Fu or Qing Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 69.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Huang, JF., Xia, H. et al. High-sensitivity PCR method for detecting BRAF V600Emutations in metastatic colorectal cancer using LNA/DNA chimeras to block wild-type alleles. Anal Bioanal Chem 406, 2477–2487 (2014). https://doi.org/10.1007/s00216-014-7618-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7618-x

Keywords

Navigation