Analytical and Bioanalytical Chemistry

, Volume 406, Issue 3, pp 695–704 | Cite as

Analysis of cyathane-type diterpenoids from Cyathus striatus and Hericium erinaceus by high-resolution MALDI MS imaging

  • Dhaka Ram Bhandari
  • Tian Shen
  • Andreas Römpp
  • Holger Zorn
  • Bernhard SpenglerEmail author
Research Paper


Fungal secondary metabolites in both fruiting bodies and pellets from submerged cultures of basidiomycetes were analyzed by atmospheric pressure matrix-assisted laser desorption/ionization-mass spectrometry imaging at a lateral resolution of 15 μm, a mass resolution of 140,000 at m/z 200 and a mass accuracy of better than 2 ppm. The striatals A, B, C, and D, and a number of erinacine type metabolites were detected in the basidiomycetes Cyathus striatus and Hericium erinaceus, respectively. The two fungi were selected as model species, as they are well-known for efficient production of terpenoid secondary metabolites with interesting biological activities, e.g., antibacterial, fungicidal, cytotoxic properties, and stimulating effects on nerve growth factor synthesis. The localization of metabolites revealed a mostly homogeneous distribution of the striatals in the pellets of C. striatus, while a concentration gradient, increasing to the center, was observed in the pellets of H. erinaceus. A mostly homogeneous distribution of metabolites was also found in the fruiting body of H. erinaceus.


Foods/beverages Mass spectrometry imaging Fungi Secondary metabolites MALDI High resolution 



Financial support by the Hessian Ministry of Science and Art (LOEWE Research Focus ‘integrative fungal research’) and by the Deutsche Forschungsgemeinschaft (DFG, Sp 314/13-1) is gratefully acknowledged.

Supplementary material

216_2013_7496_MOESM1_ESM.pdf (295 kb)
ESM 1 (PDF 294 KB)


  1. 1.
    Allbutt AD et al (1971) Cyathin, a new antibiotic complex produced by Cyathus helenae. Can J Microbiol 17(11):1401–1407CrossRefGoogle Scholar
  2. 2.
    Ayer WA, Taube H (1972) Metabolites of Cyathus helenae. Cyathin A3 and allocyathin B3, members of a new group of diterpenoids. Tetrahedron Lett 13(19):1917–1920CrossRefGoogle Scholar
  3. 3.
    Kawagishi H, Zhuang C (2008) Compounds for dementia from Hericium erinaceum. Drugs Future 33(2):149CrossRefGoogle Scholar
  4. 4.
    Shibata H, Irie A, Morita Y (1998) New antibacterial diterpenoids from the Sarcodon scabrosus fungus. Biosci Biotechnol Biochem 62(12):2450–2452CrossRefGoogle Scholar
  5. 5.
    Shibata H et al (1989) Isolation and characterization of new bitter diterpenoids from the fungus Sarcodon scabrosus. Agric Biol Chem 53(13):3373–3375CrossRefGoogle Scholar
  6. 6.
    Anke T et al (2002) Studies on the biosynthesis of striatal-type diterpenoids and the biological activity of herical. Z Naturforsch 57(3–4):263–271Google Scholar
  7. 7.
    Enquist JA, Stoltz BM (2009) Synthetic efforts toward cyathane diterpenoid natural products. Nat Prod Rep 26(5):661–680CrossRefGoogle Scholar
  8. 8.
    Anke T, Oberwinkler F (1977) The striatins—new antibiotics from the basidiomycete Cyathus striatus (Huds. ex Pers.) Willd. J Antibiot 30(3):221–225CrossRefGoogle Scholar
  9. 9.
    Inchausti A et al (1997) Leishmanicidal and trypanocidal activity of extracts and secondary metabolites from basidiomycetes. Phytother Res 11(3):193–197CrossRefGoogle Scholar
  10. 10.
    Petrova RD et al (2007) Fungal substances as modulators of NF-kappaB activation pathway. Mol Biol Rep 34(3):145–154CrossRefGoogle Scholar
  11. 11.
    Kawagishi H et al (1994) Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 35(10):1569–1572CrossRefGoogle Scholar
  12. 12.
    Kawagishi H et al (1996) Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 37(41):7399–7402CrossRefGoogle Scholar
  13. 13.
    Kawagishi H et al (1996) Erinacine D, a stimulator of NGF-synthesis, from the mycelia of Hericium erinaceum. Heterocycl Commun 2(1):51–54CrossRefGoogle Scholar
  14. 14.
    Ma B-J et al (2010) Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology 1(2):92-98Google Scholar
  15. 15.
    Yim M-H et al (2007) Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytes. Acta Pharmacol Sin 28(6):901–907CrossRefGoogle Scholar
  16. 16.
    Pallua JD et al (2012) Morphological and tissue characterization of the medicinal fungus Hericium coralloides by a structural and molecular imaging platform. Analyst 137(7):1584CrossRefGoogle Scholar
  17. 17.
    Jaeger RJR et al (2013) HR-MALDI-MS imaging assisted screening of β-carboline alkaloids discovered from Mycena metata. J Nat Prod 76(2):127–134CrossRefGoogle Scholar
  18. 18.
    Bouschen W et al (2010) Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. Rapid Commun Mass Spectrom 24(3):355–364CrossRefGoogle Scholar
  19. 19.
    Koestler M et al (2008) A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Spectrom 22(20):3275–3285CrossRefGoogle Scholar
  20. 20.
    Römpp A et al (2010) Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Ed 49(22):3834–3838CrossRefGoogle Scholar
  21. 21.
    Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. J Histochem Cell Biol 139:759–783CrossRefGoogle Scholar
  22. 22.
    Paschke C et al (2013) Mirion—a software package for automatic processing of mass spectrometric images. J Am Soc Mass Spectrom 24(8):1296-1306Google Scholar
  23. 23.
    Kawagishi H et al (2006) Erinacines J and K from the mycelia of Hericium erinaceum. Tetrahedron 62(36):8463–8466CrossRefGoogle Scholar
  24. 24.
    Kenmoku H et al (2002) Erinacine Q, a new erinacine from Hericium erinaceum and its biosynthetic route to erinacine C in the basidiomycete. Biosci Biotechnol Biochem 66(3):571–575CrossRefGoogle Scholar
  25. 25.
    Kenmoku H, Sassa T, Kato N (2000) Isolation of erinacine P, a new parental metabolite of cyathane-xylosides, from Hericium erinaceum and its biomimetic conversion into erinacines A and B. Tetrahedron Lett 41(22):4389–4393CrossRefGoogle Scholar
  26. 26.
    Lee EW et al (2000) Two novel diterpenoids, erinacines H and I from the mycelia of Hericium erinaceum. Biosci Biotechnol Biochem 64(11):2402–2405CrossRefGoogle Scholar
  27. 27.
    Ma B et al (2008) A new cyathane-xyloside from the mycelia of Hericium erinaceum. Z Naturforsch 10(63b):1241–1242Google Scholar
  28. 28.
    Miyazawa M et al (2012) Two new aromatic compounds and a new d-arabinitol ester from the mushroom Hericium erinaceum. Tetrahedron 68(7):2007–2010CrossRefGoogle Scholar
  29. 29.
    Robinson S et al (2007) Localization of water-soluble carbohydrates in wheat stems using imaging matrix-assisted laser desorption ionization mass spectrometry. New Phytol 173(2):438–444CrossRefGoogle Scholar
  30. 30.
    Goto-Inoue N, Setou M, Zaima N (2010) Visualization of spatial distribution of γ-aminobutyric acid in eggplant (Solanum melongena) by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Sci 26(7):821–825CrossRefGoogle Scholar
  31. 31.
    Mullen AK et al (2005) Determination of agrochemical compounds in soya plants by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 19(18):2507–2516CrossRefGoogle Scholar
  32. 32.
    Anderson DMG et al (2009) Examination of the distribution of nicosulfuron in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun Mass Spectrom RCM 23(9):1321–1327CrossRefGoogle Scholar
  33. 33.
    Huang M-Z et al (2012) Ambient molecular imaging of dry fungus surface by electrospray laser desorption ionization mass spectrometry. Int J Mass Spectrom 325–327:172–182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dhaka Ram Bhandari
    • 1
  • Tian Shen
    • 2
  • Andreas Römpp
    • 1
  • Holger Zorn
    • 2
  • Bernhard Spengler
    • 1
    Email author
  1. 1.Institute of Inorganic and Analytical ChemistryJustus Liebig University GiessenGiessenGermany
  2. 2.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany

Personalised recommendations