Skip to main content
Log in

Analysis and accurate reconstruction of incomplete data in X-ray differential phase-contrast computed tomography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

X-ray differential phase-contrast computed tomography (DPC-CT) is a powerful physical and biochemical analysis tool. In practical applications, there are often challenges for DPC-CT due to insufficient data caused by few-view, bad or missing detector channels, or limited scanning angular range. They occur quite frequently because of experimental constraints from imaging hardware, scanning geometry, and the exposure dose delivered to living specimens. In this work, we analyze the influence of incomplete data on DPC-CT image reconstruction. Then, a reconstruction method is developed and investigated for incomplete data DPC-CT. It is based on an algebraic iteration reconstruction technique, which minimizes the image total variation and permits accurate tomographic imaging with less data. This work comprises a numerical study of the method and its experimental verification using a dataset measured at the W2 beamline of the storage ring DORIS III equipped with a Talbot–Lau interferometer. The numerical and experimental results demonstrate that the presented method can handle incomplete data. It will be of interest for a wide range of DPC-CT applications in medicine, biology, and nondestructive testing.

The DPC-CT slices of a fluid phantom reconstructed by the conventional algorithm and the proposed AIR-TV algorithm with incomplete data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fitzgerald R (2000) Phys Today 53:23–27

    Article  Google Scholar 

  2. Momose A (2003) Opt Express 11:2303–2314

    Article  Google Scholar 

  3. Bonse U, Hart M (1965) Appl Phys Lett 6:155–156

    Article  Google Scholar 

  4. Momose A, Takeda T, Hirano K (1996) Nat Med 2:473–475

    Article  CAS  Google Scholar 

  5. Ingal VN, Beliaevskaya EA (1995) J Phys D 28:2314–2317

    Article  CAS  Google Scholar 

  6. Davis TJ, Gao D, Gureyev TE et al (1995) Nature 373:595–598

    Article  CAS  Google Scholar 

  7. Chapman LD, Thomlinson W, Johnston RE et al (1997) Phys Med Biol 42:2015–2025

    Article  CAS  Google Scholar 

  8. Snigirev A, Snigireva I, Kohn V et al (1995) Rev Sci Instrum 66:5486–5492

    Article  CAS  Google Scholar 

  9. Wilkins SW, Gureyev TE, Gao D et al (1996) Nature 384:335–337

    Article  CAS  Google Scholar 

  10. Cloetens P, Ludwig W, Baruchel J et al (1999) Appl Phys Lett 75:2912–2914

    Article  CAS  Google Scholar 

  11. Nugent KA, Gureyev TE, Cookson DF et al (1996) Phys Rev Lett 77:2961–2964

    Article  CAS  Google Scholar 

  12. Momose A, Kawamoto S, Koyama I et al (2003) Jpn J Appl Phys 42:866–868

    Article  Google Scholar 

  13. Weitkamp T, Diaz A, David C et al (2005) Opt Express 13:6296–6304

    Article  Google Scholar 

  14. Momose A (2005) Jpn J Appl Phys 44:6355–6367

    Article  CAS  Google Scholar 

  15. Pfeiffer F, Weitkamp T, Bunk O et al (2006) Nat Phys 2:258–261

    Article  CAS  Google Scholar 

  16. Pfeiffer F, Kottler C, Bunk O et al (2007) Phys Rev Lett 98:108105

    Article  CAS  Google Scholar 

  17. Pfeiffer F, Bech M, Bunk O et al (2008) Nat Mater 7:134–137

    Article  CAS  Google Scholar 

  18. Bech M, Jensen TH, Feidenhansl R et al (2009) Phys Med Biol 54:2747–2753

    Article  Google Scholar 

  19. Donath T, Pfeiffer F, Bunk O et al (2010) Invest Radiol 45:445–452

    Google Scholar 

  20. Olivo A, Speller R (2007) Appl Phys Lett 91:74106

    Article  Google Scholar 

  21. Huang ZF, Kang KJ, Zhang L et al (2009) Phys Rev A 79:13815

    Article  Google Scholar 

  22. Wang Z, Zhu P, Huang W et al (2010) Anal Bioanal Chem 397:2137–2141

    Article  CAS  Google Scholar 

  23. Wang Z, Zhu P, Huang W et al (2010) Anal Bioanal Chem 397:2091–2094

    Article  CAS  Google Scholar 

  24. Zhang Y Hong K, Zhu P et al (2011) Anal Bioanal Chem 401:837–844

    Article  Google Scholar 

  25. Zhu PP, Zhang K, Wang ZL et al (2010) Proc Natl Acad Sci USA 107:13576–13581

    Article  CAS  Google Scholar 

  26. Takeda M, Ina H, Kobayashi S (1982) J Opt Soc Am 72:156–160

    Article  Google Scholar 

  27. Sidky EY, Kao CM, Pan XC (2006) J X-Ray Sci Tech 14:119–139

    Google Scholar 

  28. Köhler T, Brendel B, Roessl E (2011) Med Phys 38:4542–4545

    Article  Google Scholar 

  29. Xu QF, Sidky EY, Pan XC et al (2012) Opt Express 20:10724–10729

    Article  Google Scholar 

  30. Fu J, Schleede S, Tan RB et al (2013) Z Med Phys 23:186–193

    Article  Google Scholar 

  31. Candes E, Romberg J, Tao T (2006) IEEE Trans Inf Theo 52:489–509

    Article  Google Scholar 

  32. Herzen J, Donath T, Beckman F et al (2011) Rev Sci Instrum 82:113711

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the staff at the W2 beamline of the storage ring DORIS III for their support to the experiment. Special thanks are also given to Dr. Julia Herzen for preparing the experimental data. We would also like to thank Prof. Franz Pfeiffer and Dr. Guillaume Potdevin for reading the draft of this paper. This work was partially supported by the Natural Science Foundation of China (grant nos. 11179009 and 50875013), China Beijing Municipal Natural Science Foundation (grant no. 4102036), Program for New Century Excellent Talents in University (NCET) from Ministry of Education of P.R. China, and China Beijing NOVA Program (no. 2009A09). The experiments were performed at the W2 beamline of the storage ring DORIS III, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Tan, R. & Chen, L. Analysis and accurate reconstruction of incomplete data in X-ray differential phase-contrast computed tomography. Anal Bioanal Chem 406, 897–904 (2014). https://doi.org/10.1007/s00216-013-7482-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7482-0

Keywords

Navigation