Skip to main content

Advertisement

Log in

Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

How the redox proteins and enzymes involved in bioenergetic pathways are organized is a relevant fundamental question, but our understanding of this is still incomplete. This review provides a critical examination of the electrochemical tools developed in recent years to obtain knowledge of the intramolecular and intermolecular electron transfer processes involved in metabolic pathways. Furthermore, better understanding of the electron transfer processes associated with energy metabolism will provide the basis for the rational design of biotechnological devices such as electrochemical biosensors, enzymatic and microbial fuel cells, and hydrogen production factories. Starting from the redox complexes involved in two relevant bacterial chains, i.e., from the hyperthermophile Aquifex aeolicus and the acidophile Acidithiobacillus ferrooxidans, examination of protein–protein interactions using electrochemistry is first reviewed, with a focus on the orientation of a protein on an electrochemical interface mimic of a physiological interaction between two partners. Special attention is paid to current research in the electrochemistry of essential membrane proteins, which is one mandatory step toward the understanding of energy metabolic pathways. The complex and challenging architectures built to reconstitute a membrane-like environment at an electrode are especially considered. The role played by electrochemistry in the attempt to consider full bacterial metabolism is finally emphasized through the study of whole cells immobilized at electrodes as suspensions or biofilms. Before the performances of biotechnological devices can be further improved to make them really attractive, questions remain to be addressed in this particular field of research. We discuss the bottlenecks that need to be overcome in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CcO:

Cytochrome c oxidase

DET:

Direct electron transfer

DvH:

Desulfovibrio vulgaris Hildenborough

PMIRRAS:

Polarization-modulation infrared reflection–adsorption spectroscopy

QCM:

Quartz crystal microbalance

SAM:

Self-assembled monolayer

SEIRA:

Surface-enhanced infrared absorption

SHE:

Standard hydrogen electrode

t-BLM:

Tethered bilayer lipid membrane

References

  1. Leech D, Kavanagh P, Schuhmann W (2012) Electrochim Acta 84:223–234

    CAS  Google Scholar 

  2. Lovley D (2011) Energy Environ Sci 4:4896–4906

    CAS  Google Scholar 

  3. Moehlenbrock M, Toby T, Pelster L, Minteer S (2011) ChemCatChem 3:561–570

    CAS  Google Scholar 

  4. Borgmann S, Schulte A, Neugebaue S, Schuhmann W (2011) In: Alkire RC, Kolb DM, Lipkowski J (eds) Advances in electrochemical science and engineering: bioelectrochemistry, vol 13. Weinheim, Wiley-VCH

    Google Scholar 

  5. Wang J (2006) Biosens Bioelectron 21:1887–1892

    CAS  Google Scholar 

  6. Zayats M, Willner B, Willner I (2008) Electroanalysis 20:583–601

    CAS  Google Scholar 

  7. Amine A, Mohammadi H, Bourais I, Pallesschi G (2006) Biosens Bioelectron 21:1405–1423

    CAS  Google Scholar 

  8. Willner I, Katz E (2000) Angew Chem Int Ed 39:1180–1218

    Google Scholar 

  9. de Poulpiquet A, Ciaccafava A, Lojou E (2013) Electrochim Acta. doi:10.1016/j.electacta.2013.07.133

    Google Scholar 

  10. Zhou Z, Hartmann M (2013) Chem Soc Rev 42:3894–3912

    CAS  Google Scholar 

  11. Katz E, Minko S, Halamek J, MacVittie K, Yancey K (2013) Anal Bioanal Chem 405:3659–3672

    CAS  Google Scholar 

  12. Putzbach W, Ronkainen N (2013) Sensors 13:4811–4840

    CAS  Google Scholar 

  13. Prakash S, Chakrabarty T, Singh A, Shahi V (2013) Biosens Bioelectron 41:43–53

    CAS  Google Scholar 

  14. Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harley and Klein's microbiology, 7th edn. McGraw Hill, New York

  15. Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ, Clarke TA (2012) Mol Microbiol 85:201–212

    CAS  Google Scholar 

  16. Richter O, Ludwig B (2009) Biochim Biophys Acta 1787:626–634

    CAS  Google Scholar 

  17. Lenaz G, Genova ML (2012) Adv Exp Med Biol 748:107–144

    CAS  Google Scholar 

  18. Vonck J, Schäfer E (2009) Biochim Biophys Acta 1793:117–124

    CAS  Google Scholar 

  19. Boekema EJ, Braun HP (2007) J Biol Chem 282:1–4

    CAS  Google Scholar 

  20. Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI, Formiggini G, Sgarbi G, Solaini G, Lenaz G (2008) Biochim Biophys Acta 1777:740–746

    CAS  Google Scholar 

  21. Genova ML, Lenaz G (2013) Biol Chem. doi:10.1515/hsz-2012-0317

    Google Scholar 

  22. Prunetti L, Infossi P, Brugna M, Ebel C, Giudici-Orticoni MT, Guiral M (2010) J Biol Chem 285:41815–41826

    CAS  Google Scholar 

  23. Magalon A, Arias-Cartin R, Walburger A (2012) Adv Microb Physiol 61:217–266

    CAS  Google Scholar 

  24. Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P, Giordano G, Guigliarelli B, Magalon A (2011) Proc Natl Acad Sci U S A 108:7781–7786

    CAS  Google Scholar 

  25. Bazán S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W (2013) J Biol Chem 288:401–411

    Google Scholar 

  26. Guiral M, Prunetti L, Lignon S, Lebrun R, Giudici-Orticoni MT (2009) J Proteome Res 8:1717–1730

    CAS  Google Scholar 

  27. Guiral M, Prunetti L, Aussignargues C, Ciaccafava A, Infossi P, Ilbert M, Lojou E, Giudici-Orticoni MT (2012) Adv Microb Physiol 61:125–194

    CAS  Google Scholar 

  28. Roger M, Castelle C, Guiral M, Infossi P, Lojou E, Giudici-Orticoni MT, Ilbert M (2012) Biochem Soc Trans 40:1324–1329

    CAS  Google Scholar 

  29. Brugna-Guiral M, Tron P, Nitschke W, Stetter K-O, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT (2003) Extremophiles 7:145–157

    CAS  Google Scholar 

  30. Prunetti L, Brugna M, Lebrun R, Giudici-Orticoni MT, Guiral M (2011) PLoS One 6(6):e21616

    CAS  Google Scholar 

  31. Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT (2005) J Biol Chem 280:42004–42015

    CAS  Google Scholar 

  32. Ilert M, Bonnefoy V (2013) Biochim Biophys Acta 1827:161–175

    Google Scholar 

  33. Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT (2008) J Biol Chem 283:25803–25811

    CAS  Google Scholar 

  34. Malarte G, Leroy G, Lojou E, Abergel C, Bruschi M, Giudici-Orticoni MT (2005) Biochemistry 44:6471–6481

    CAS  Google Scholar 

  35. Castelle C, Ilbert M, Infossi P, Leroy G, Giudici-Orticoni MT (2010) J Biol Chem 285:21519–21525

    CAS  Google Scholar 

  36. Frew JE, Hill H (1988) Eur J Biochem 172:261–269

    CAS  Google Scholar 

  37. Armstrong FA, Hill HAO, Walton NJ (1988) Acc Chem Res 21:407–413

    CAS  Google Scholar 

  38. Page C, Moser C, Chen X, Dutton P (1999) Nature 402:47–52

    CAS  Google Scholar 

  39. Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) Eur J Biochem 251:367–373

    CAS  Google Scholar 

  40. Jin B, Wang GX, Millo D, Hildebrandt P, Xia XH (2012) J Phys Chem C 116:13038–13044

    CAS  Google Scholar 

  41. Lojou E, Luciano P, Nitsche S, Bianco P (1999) Electrochim Acta 44:3341–3352

    CAS  Google Scholar 

  42. Lojou E, Bianco P (2000) J Electroanal Chem 485:71–80

    CAS  Google Scholar 

  43. Pardo-Yissar V, Katz E, Willner I, Kotlyar A, Sanders C, Lill H (2000) Faraday Discuss 116:119–134

    CAS  Google Scholar 

  44. Wegerig F, Giachetti A, Allegrozzi M, Lisdat F, Turano P (2013) J Biol Inorg Chem 18:429–440

    Google Scholar 

  45. Chen Y, Yang XJ, Guo LR, Jin B, Xia XH, Zheng LM (2009) Talanta 78:248–252

    CAS  Google Scholar 

  46. Wang G, Bao W, Wang M, Xia H (2012) Chem Commun 48:10859–10861

    CAS  Google Scholar 

  47. Correira dos Santos M, Paes de Sousa P, Simoes Goncalves M, Krippahl L, Moura J, Lojou E, Bianco P (2003) J Electroanal Chem 541:153–162

    Google Scholar 

  48. Abergel C, Nitschke W, Malarte G, Bruschi M, Claverie JM, Giudici-Orticoni MT (2003) Structure 11:547–555

    CAS  Google Scholar 

  49. Chi Q, Zhang J, Arslan T, Borg L, Pedersen G, Christensen H, Nazmudtinov R, Ulsrup J (2010) J Phys Chem B 114:5617–5624

    CAS  Google Scholar 

  50. Zhang J, Chi Q, Hansen Q, Jensen P, Salvatore P, Ulstrup J (2012) FEBS Lett 586:526–535

    CAS  Google Scholar 

  51. Raffalt A, Schmidt L, Christensen H, Chi Q, Ulsrup J (2009) J Inorg Biochem 103:717–722

    CAS  Google Scholar 

  52. Monari S, Battistuzzi G, Borsari M, Di Rocco G, Martini L, Ranieri A, Sola M (2009) J Phys Chem 113:13645–13653

    CAS  Google Scholar 

  53. Ciaccafava A, Alberola M, Hameury S, Infossi P, Giudici-Orticoni MT, Lojou E (2011) Electrochim Acta 56:3359–3368

    CAS  Google Scholar 

  54. Cracknell J, McNamara T, Lowe E, Blanford C (2011) Dalton Trans 40:6668–6675

    CAS  Google Scholar 

  55. Blanford C, Heath R, Armstrong F (2007) Chem Commun 17:1710–1712

    Google Scholar 

  56. Olejnik P, Palys B, Kowalczyk A, Nowicka A (2012) J Phys Chem C 116:25911–25918

    CAS  Google Scholar 

  57. Vignais P, Billoud B (2007) Chem Rev 107:4206–4272

    CAS  Google Scholar 

  58. Rüdiger O, Gutierrez-Sanchez C, Olea D, Pereira I, Velez M, Fernandez V, de Lacey A (2010) Electroanalysis 22:776–783

    Google Scholar 

  59. Lojou E (2011) Electrochim Acta 56:10385–10397

    CAS  Google Scholar 

  60. Lojou E, Luo X, Brugna M, Candoni N, Dementin S, Giudici-Orticoni MT (2008) J Biol. Inorg Chem 13:1157–1167

    CAS  Google Scholar 

  61. Millo D, Pandelia ME, Utesch T, Wisitruangsakul N, Mroginski MA, Lubitz W, Hildebrandt P, Zebger I (2009) J Phys Chem 113:15344–15351

    CAS  Google Scholar 

  62. Utesch T, Millo D, Castro A, Hildebrandt P, Zebger I, Mroginski M (2013) Langmuir 29:673–682

    CAS  Google Scholar 

  63. Luo XJ, Brugna M, Infossi P, Giudici-Orticoni MT, Lojou E (2009) J Biol Inorg Chem 14:1275–1288

    CAS  Google Scholar 

  64. Ciaccafava A, Infossi P, Ilbert M, Guiral M, Lecomte S, Giudici-Orticoni MT, Lojou E (2012) Angew Chem Int Ed 51:953–956

    CAS  Google Scholar 

  65. Ciaccafava A, De Poulpiquet A, Infossi P, Robert S, Gadiou R, Giudici-Orticoni MT, Lecomte S, Lojou E (2012) Electrochim Acta 82:115–125

    CAS  Google Scholar 

  66. Katz E (1994) J Electroanal Chem 365:157–164

    CAS  Google Scholar 

  67. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Nature 473:55–60

    CAS  Google Scholar 

  68. Kato M, Cardona T, Rutherford W, Reisner E (2013) J Am Chem Soc 135:10610–10613

    CAS  Google Scholar 

  69. Madden C, Vaughn M, Diez-Perez I, Brown K, King P, Gust D, Moore A, Moore T (2012) J Am Chem Soc 134:1577–1582

    CAS  Google Scholar 

  70. Bianco P, Haladjian J, Bruschi M, Guerlesquin F (1992) Biochem Biophys Res Commun 189:633–639

    CAS  Google Scholar 

  71. Lojou E, Bianco P (2004) Electroanalysis 16:1093–1100

    CAS  Google Scholar 

  72. Pieulle L, Morelli X, Gallice P, Lojou E, Barbier P, Czjzek M, Bianco P, Guerlesquin F, Hatchikian C (2005) J Mol Biol 354:73–90

    Google Scholar 

  73. Lojou E, Cutruzzola F, Tegoni M, Bianco P (2003) Electrochim Acta 48:1055–1064

    CAS  Google Scholar 

  74. Paes de Sousa P, Pauleta S, Simoes Goncalves M, Pettigrew G, Correia dos Santos M, Moura J (2007) J Biol Inorg Chem 12:691–698

    CAS  Google Scholar 

  75. Paes de Sousa P, Rodrigues D, Timóteo C, Simões Gonçalves M, Pettigrew G, Moura I, Moura J, Correia dos Santos M (2011) J Biol Inorg Chem 16:881–888

    CAS  Google Scholar 

  76. Fujita K, Hirasawa-Fujita M, Brown D, Obara Y, Ijima F, Kohzuma T, Dooley D (2012) J Inorg Biochem 115:163–173

    CAS  Google Scholar 

  77. Ferapontova H, Ruzgas T, Gorton L (2003) Anal Chem 75:4841–4850

    CAS  Google Scholar 

  78. Sarauli D, Ludwig R, Haltrich D, Gorton L, Lisdat F (2012) Bioelectrochemistry 87:9–14

    CAS  Google Scholar 

  79. Bagby S, Barker P, Guo L, Hill H (1990) Bioelectrochemistry 29:3213–3219

    CAS  Google Scholar 

  80. Burrows A, Guo L, Hill H, McLendon G, Sherman F (1991) Eur J Biochem 202:543–549

    CAS  Google Scholar 

  81. Lojou E, Pieulle L, Guerlesquin F, Bianco P (2002) J Electroanal Chem 523:150–159

    CAS  Google Scholar 

  82. Cambillaud C, Frey M, Mossé J, Guerlesquin F, Bruschi M (1988) Proteins Struct Funct Genet 4:63–70

    Google Scholar 

  83. Lojou E, Bianco P (2004) J Electroanal Chem 573:159–167

    CAS  Google Scholar 

  84. Seetharaman R, White S, Rivera M (1996) Biochemistry 35:12455

    CAS  Google Scholar 

  85. Heering H, Wiertz F, Dekker C, de Vries S (2004) J Am Chem Soc 136:11103–11112

    Google Scholar 

  86. Grumelli D, Mendez de Leo L, Bonazzola C, Zamlynny V, Calvo E, Salvarezza R (2010) Langmuir 26:8226–8232

    CAS  Google Scholar 

  87. Sezer M, Frielingsdorf S, Millo D, Heidary N, Utesch T, Mroginski MA, Friedrich B, Hildebrandt P, Zebger I, Weidinger IM (2011) J Phys Chem B 115:10368–10374

    CAS  Google Scholar 

  88. Jensen P, Chi Q, Zhang J, Ulstrup J (2009) J Phys Chem C 113:13393–14000

    Google Scholar 

  89. Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H (2009) Biochim Biophys Acta 1787:635–645

    CAS  Google Scholar 

  90. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669

    CAS  Google Scholar 

  91. Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Proc Natl Acad Sci U S A 103:16117–16122

    CAS  Google Scholar 

  92. Haas A, Pilloud D, Reddy K, Babcock G, Moser C, Blasie J, Dutton P (2001) J Phys Chem B 105:11351–11362

    CAS  Google Scholar 

  93. Devadoss A, Burgess J (2002) Langmuir 18:9617–9621

    CAS  Google Scholar 

  94. Su L, Kelly J, Hawkridge F, Rhoten M, Baskin S (2005) J Electroanal Chem 581:241–248

    CAS  Google Scholar 

  95. Knoll W, Morigaki K, Naumann R, Sacca B, Schiller S, Sinner E (2004) In: Mirsky VM (ed) Ultrathin electrochemical chemo- and biosensors, technology and performance. Springer, Berlin, pp 239–254

    Google Scholar 

  96. Naumann R, Schmidt E, Jonczyk A, Fendler K, Kadenbach B, Liebermann T, Offenhäusser A, Knoll W (1999) Biosens Bioelectron 14:651–662

    CAS  Google Scholar 

  97. Rossi C, Chopineau J (2007) Eur Biophys J 36:955–965

    CAS  Google Scholar 

  98. Leitch J, Kunze J, Goddard J, Qchwan A, Faragher R, Naumann R, Knoll W, Dutcher J, Lipkowski J (2009) J Am Chem Soc 25:10354–10363

    CAS  Google Scholar 

  99. Friedrich M, Plum M, Santonicola M, Kirste V, Knoll W, Ludwig B, Naumann R (2008) Biophys J 95:1500–1510

    CAS  Google Scholar 

  100. Ataka K, Richter B, Heberle J (2006) J Phys Chem B 110:9339–9347

    CAS  Google Scholar 

  101. Schach D, Nawak C, Gennis R, Ferguson-Miller S, Knoll W, Walz D, Naumann R (2010) J Electroanal Chem 649:268–276

    CAS  Google Scholar 

  102. Nowak C, Schach D, Gebert J, Grosserueschkamp M, Gennis R, Ferguson-Miller S, Knoll W, Walz D, Naumann R (2011) J Solid State Electrochem 15:105–114

    CAS  Google Scholar 

  103. Infossi P, Lojou E, Chauvin JP, Herbette G, Brugna M, Giudici-Orticoni MT (2010) Int J Hydrog Energy 35:10778–10789

    CAS  Google Scholar 

  104. Jeuken L, Connell S, Nurnabi M, O’Reilly J, Henderson P, Evans S, Bushby R (2005) Langmuir 21:1481–1488

    CAS  Google Scholar 

  105. Weiss S, Bushby R, Evans S, Jeuken L (2010) Biochim Biophys Acta 1797:1917–1923

    CAS  Google Scholar 

  106. McMillan D, Marritt S, Firer-Sherwood M, Shi L, Richardson D, Evans S, Elliot S, Butt J, Jeuken L (2013) 135:10550–10556

  107. Yuan Y, Zhou S, Zhang J, Zhuang L, Yang G, Kim S (2012) Electrochem Commun 18:62–65

    CAS  Google Scholar 

  108. Kundu A, Sau J, Redzwan G, Hashim M (2013) Int J Hydrog Energy 38:1745–1757

    CAS  Google Scholar 

  109. Gnana kumar G, Sarathi V, Nahm K (2013) Biosens Bioelectron 43:461–475

    Google Scholar 

  110. Abo-Hashesh M, Wang R, Hallenbeck P (2011) Bioresour Technol 102:8414–8422

    CAS  Google Scholar 

  111. Eriksen S, Riis M, Holm N, Iversen N (2011) Biotechnol Lett 33:293–300

    CAS  Google Scholar 

  112. Quéméneur M, Hamelin J, Benomar S, Giudici-Orticoni MT, Latrille E, Steyer JP, Trably E (2011) Int J Hydrog Energy 36:11654–11665

    Google Scholar 

  113. Willquist K, van Niel E (2010) Metab Eng 12:282–290

    CAS  Google Scholar 

  114. Kostesha N, Willquist K, Emneus J, van Niel E (2011) Extremophiles 15:77–87

    Google Scholar 

  115. Ikeda T, Kano K (2001) J Biosci Bioeng 92:9–18

    CAS  Google Scholar 

  116. Lojou E, Bianco P (2004) Electroanalysis 16:1113–1121

    CAS  Google Scholar 

  117. Lojou E, Durand M, Dolla A, Bianco P (2002) Electroanalysis 14:913–922

    CAS  Google Scholar 

  118. Pohorelic B, Voordouw J, Lojou E, Dolla A, Harder J, Voordouw G (2002) J Bacteriol 184:679–686

    CAS  Google Scholar 

  119. Gregory K, Bond D, Lovley D (2004) Environ Microbiol 6:596–604

    CAS  Google Scholar 

  120. Malvankar N, Vargas M, Nevin K, Franks A, Leang C, Kim B, Inoue K, Mester T, Covalla S, Johnson J, Rotelllo V, Tuominen M, Lovley D (2011) Nat Nanotechnol 6:573–579

    Google Scholar 

  121. Snider R, Strycharz-Glaven S, Tsoi S, Erickson J, Tender L (2012) Proc Natl Acad Sci U S A 109:15467–15472

    CAS  Google Scholar 

  122. Jiang X, Hu J, Fitzgerald L, Biffinger J, Xie P, Ringeisen B, Lieber C (2010) Proc Natl Acad Sci U S A 107:16806–16810

    CAS  Google Scholar 

  123. Lovley D (2012) Biochem Soc Trans 40:1186–1190

    CAS  Google Scholar 

  124. Rabaey K, Rodriguez J, Blachkall L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K (2007) ISME J 1:9–18

    CAS  Google Scholar 

  125. Smith J, Lovley D, Tremblay P (2013) Appl Environ Microbiol 79:901–907

    CAS  Google Scholar 

  126. Rosenbaum M, Aulenta F, Villano M, Angenent L (2011) Bioresour Technol 102:324–333

    CAS  Google Scholar 

  127. Rozendal R, Jeremiasse A, Hamelers H, Buisman C (2008) Environ Sci Technol 42:629–634

    CAS  Google Scholar 

  128. Aulenta F, Catapano L, Snip L, Villano M, Majone M (2012) ChemSusChem 5:1080–1085

    CAS  Google Scholar 

  129. Yu L, Duan J, Zhao W, Huang Y, Hou B (2011) Electrochim Acta 56:9041–9047

    CAS  Google Scholar 

  130. Armstrong F, Belsey N, Cracknell J, Goldet G, Parkin A, Reisner E, Vincent K, Wait A (2009) Chem Soc Rev 38:36–51

    CAS  Google Scholar 

  131. Lojou E, Bianco P (2006) Biogeosciences 69:237–247

    CAS  Google Scholar 

  132. Carbajosa S, Malki M, Caillard R, Lopez R, Palomares F, Martin-Gago J, Rodriguez N, Amils R, Fernandez V, De Lacey A (2010) Biosens Bioelectron 26:877–880

    CAS  Google Scholar 

  133. Erable B, Etcheverry L, Bergel A (2009) Electrochem Commun 11:619–622

    CAS  Google Scholar 

  134. Wei V, Elektorowicz M, Oleszkiewicz J (2011) Water Res 45:5058–5062

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Région Provence-Alpes-Côte d’Azur, CNRS, and ANR Bioénergie no. ANR-2010-BIOE-003-01 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lojou.

Additional information

Published in the special issue Analytical Science in France with guest editors Christian Rolando and Philippe Garrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roger, M., de Poulpiquet, A., Ciaccafava, A. et al. Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production. Anal Bioanal Chem 406, 1011–1027 (2014). https://doi.org/10.1007/s00216-013-7465-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7465-1

Keywords