Skip to main content

Advertisement

Log in

In vitro synthesis and characterisation of three fenoterol sulfoconjugates detected in fenoterol post-administration urine samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fenoterol, a fast-acting β2-adrenergic agonist, is used in the therapy of obstructive pulmonary diseases and for the inhibition of premature labour obstetrics. Doping control for β2-agonists, which are prohibited in sports by the World Anti-Doping Agency, is commonly performed by liquid chromatography/mass spectrometry after hydrolysis of phase II metabolites. The continuing development of analytical procedures has led to direct injection of urine samples without sample preparation becoming a viable tool. For the detection of substances without sample preparation, including hydrolysis, detailed information of the phase II metabolism of the substances is essential. In this study, human S9 fractions of different tissues and two recombinant sulfotransferases were investigated for their potential to form fenoterol sulfoconjugates, which were characterised in detail. Two mono-sulfoconjugates and one bis-sulfoconjugate were synthesised and their structures confirmed by liquid chromatography–high-resolution/high-accuracy mass spectrometry. All of the metabolites were identified as esterified phenolic compounds. Excretion studies with orally and inhalatively administered fenoterol proved the occurrence of the sulfoconjugates in vivo. Inhalatively administered fenoterol resulted in the detection of the two mono-sulfoconjugates in low amounts in urine due to the lower inhalation dose of fenoterol compared to the oral dose. After oral uptake of fenoterol, the two mono-sulfoconjugates and a fenoterol bis-sulfoconjugate were detected in urine. This is the first report of the bis-sulfoconjugate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Morgan DJ (1990) Clinical pharmacokinetics of beta-agonists. Clin Pharmacokinet 18:270–294

    Article  CAS  Google Scholar 

  2. Hochhaus G, Mollmann H (1992) Pharmacokinetic pharmacodynamic characteristics of the beta-2-agonists terbutaline, salbutamol and fenoterol. Int J Clin Pharmacol 30:342–362

    CAS  Google Scholar 

  3. Richter R, Hinselmann MJ (1979) The treatment of threatened premature labor by betamimetic drugs: a comparison of fenoterol and ritodrine. Obstet Gynecol 53:81–87

    CAS  Google Scholar 

  4. The 2013 Prohibited List. World Anti-Doping Agency. http://www.wada-ama.org/en/world-anti-doping-program/sports-and-anti-doping-organizations/international-standards/prohibited-list/. Accessed 10 Mar 2013

  5. Thevis M, Opfermann G, Schänzer W (2003) Liquid chromatography/electrospray ionization tandem mass spectrometric screening and confirmation methods for beta(2)-agonists in human or equine urine. J Mass Spectrom 38:1197–1206

    Article  CAS  Google Scholar 

  6. Sardela VF, Deventer K, Pereira HMG, de Aquino Neto FR, Van Eenoo P (2012) Development and validation of a ultra high performance liquid chromatography-tandem mass spectrometric method for the direct detection of formoterol in human urine. J Pharm Biomed Anal 70:471–475

    Article  CAS  Google Scholar 

  7. Thörngren JO, Ostervall F, Garle M (2008) A high-throughput multicomponent screening method for diuretics, masking agents, central nervous system (CNS) stimulants and opiates in human urine by UPLC-MS/MS. J Mass Spectrom 43:980–992

    Article  Google Scholar 

  8. Badoud F, Grata E, Perrenoud L, Avois L, Saugy M, Rudaz S, Veuthey JL (2009) Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry: I. Screening analysis. J Chromatogr A 1216:4423–4433

    Article  CAS  Google Scholar 

  9. Guddat S, Solymos E, Orlovius A, Thomas A, Sigmund G, Geyer H, Thevis M, Schänzer W (2011) High-throughput screening for various classes of doping agents using a new ‘dilute-and-shoot’ liquid chromatography-tandem mass spectrometry multi-target approach. Drug Test Anal 3:836–850

    Article  CAS  Google Scholar 

  10. Orlovius AK, Guddat S, Parr MK, Kohler M, Gütschow M, Thevis M, Schänzer W (2009) Terbutaline sulfoconjugate: characterization and urinary excretion monitored by LC/ESI-MS/MS. Drug Test Anal 1:568–575

    Article  CAS  Google Scholar 

  11. Parr MK, Orlovius AK, Guddat S, Gütschow M, Thevis M, Schänzer W (2007) Sulfoconjugates of heavy volatile nitrogen containing doping substances for improved LC-MS/MS screening. In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis (15). Sport und Buch Strauß, Köln, pp 97–102

    Google Scholar 

  12. Hildebrandt R, Wagner B, Preissnowzohour K, Gundertremy U (1994) Fenoterol metabolism in man—sulfation versus glucuronidation. Xenobio 24:71–77

    Article  CAS  Google Scholar 

  13. Henze MK, Opfermann G, Spahn-Langguth H, Schänzer W (2001) Screening of beta-2 agonists and confirmation of fenoterol, orciprenaline, reproterol and terbutaline with gas chromatography–mass spectrometry as tetrahydroisoquinoline derivatives. J Chromatogr B 751:93–105

    Article  CAS  Google Scholar 

  14. Henze MK, Opfermann G, Spahn-Langguth H, Schänzer W (2000) Screening of beta-2-agonists and confirmation of fenoterol, reproterol, orciprenaline and terbutaline after cyclisation with formaldehyde. In: Schänzer W, Geyer H, Gotzmann A, Mareck-Engelke U (eds) Recent advances in doping analysis (8). Sport und Buch Strauß, Köln, pp 59–67

    Google Scholar 

  15. Laros CD, Vanurk P, Rominger KL (1977) Absorption, distribution and excretion of tritium-labeled beta-2-stimulator fenoterol hydrobromide following aerosol administration and instillation into bronchial tree. Respir 34:131–140

    Article  CAS  Google Scholar 

  16. Koster AS, Frankhuijzen-Sierevogel AC, Mentrup A (1986) Stereoselective formation of fenoterol-para-glucuronide and fenoterol-meta-glucuronide in rat hepatocytes and enterocytes. Biochem Pharmac 35:1981–1985

    Article  CAS  Google Scholar 

  17. Rominger KL, Pollmann W (1972) Comparative pharmacokinetic studies on fenoterol hydrobromide in rat, dog and man. Arzneim-Forsch/Drug Res 22:1190

    CAS  Google Scholar 

  18. Bandurski RS, Wilson LG, Squires CL (1956) The mechanism of active sulfate formation. J Am Chem Soc 78:6408–6409

    Article  CAS  Google Scholar 

  19. Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, McManus ME (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  CAS  Google Scholar 

  20. Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MW (2004) A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenet Genomics 14:199–211

    CAS  Google Scholar 

  21. Hildebrandt MAT, Salavaggione OE, Martin YN, Flynn HC, Jalal S, Wieben ED, Weinshilboum RM (2004) Human SULT1A3 pharmacogenetics: gene duplication and functional genomic studies. Biochem Biophys Res Commun 321:870–878

    Article  CAS  Google Scholar 

  22. Cappiello M, Giuliani L, Pacifici GM (1990) Differential distribution of phenol and catechol sulphotransferases in human liver and intestinal mucosa. Pharmacol 40:69–76

    Article  CAS  Google Scholar 

  23. Wilson AA, Wang J, Koch P, Walle T (1997) Stereoselective sulphate conjugation of fenoterol by human phenolsulphotransferases. Xenobio 27:1147–1154

    Article  CAS  Google Scholar 

  24. Duffus JH, Nordberg M, Templeton DM (2007) Glossary of terms used in toxicology, 2nd edition. Pure Appl Chem 79:1153–1344

    Article  CAS  Google Scholar 

  25. Falany CN, Falany JL, Wang J, Hedstrom J, Chelpin HV, Swedmark S (1999) Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos 27:1057–1063

    CAS  Google Scholar 

  26. Wong CC, Meinl W, Glatt HR, Barron D, Stalmach A, Steiling H, Crozier A, Williamson G (2010) In vitro and in vivo conjugation of dietary hydroxycinnamic acids by UDP-glucuronosyltransferases and sulfotransferases in humans. J Nutr Biochem 21:1060–1068

    Article  CAS  Google Scholar 

  27. Kuuranne T, Kurkela M, Thevis M, Schänzer W, Finel M, Kostiainen R (2003) Glucuronidation of anabolic androgenic steroids by recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos 31:1117–1124

    Article  CAS  Google Scholar 

  28. Kuuranne T, Leinonen A, Schänzer W, Kamber M, Kostiainen R, Thevis M (2008) Aryl-propionamide-derived selective androgen receptor modulators: liquid chromatography-tandem mass spectrometry characterization of the in vitro synthesized metabolites for doping control purposes. Drug Metab Dispos 36:571–581

    Article  CAS  Google Scholar 

  29. Levsen K, Schiebel HM, Behnke B, Dotzer R, Dreher W, Elend M, Thiele H (2005) Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview. J Chromatogr A 1067:55–72

    Article  CAS  Google Scholar 

  30. Riches Z, Stanley EL, Bloomer JC, Coughtrie MWH (2009) Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “Pie”. Drug Metab Dispos 37:2255–2261

    Article  CAS  Google Scholar 

  31. Gamage NU, Tsvetanov S, Duggleby RG, McManus ME, Martin JL (2005) The structure of human SULT1A1 crystallized with estradiol. J Biol Chem 280:41482–41486

    Article  CAS  Google Scholar 

  32. Reiter C, Mwaluko G, Dunnette J, Van Loon J, Weinshilboum R (1983) Thermolabile and thermostable human platelet phenol sulfotransferase. Substrate specificity and physical separation. Naunyn Schmied Arch Pharmacol 324:140–147

    Article  CAS  Google Scholar 

  33. Raftogianis RB, Wood TC, Weinshilboum RM (1999) Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype-phenotype correlations. Biochem Pharmacol 58:605–616

    Article  CAS  Google Scholar 

  34. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, McManus ME, Martin JL (2003) Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem 278:7655–7662

    Article  CAS  Google Scholar 

  35. Pacifici GM, Giulianetti B, Quilici MC, Spisni R, Nervi M, Giuliani L, Gomeni R (1997) (−)-Salbutamol sulphation in the human liver and duodenal mucosa: interindividual variability. Xenobio 27:279–286

    Google Scholar 

  36. Ko K, Kurogi K, Davidson G, Liu M-Y, Sakakibara Y, Suiko M, Liu M-C (2012) Sulfation of ractopamine and salbutamol by the human cytosolic sulfotransferases. J Biochem 152:275–283

    Article  CAS  Google Scholar 

  37. Pacifici GM, Eligi M, Giuliani L (1993) (+) and (−) terbutaline are sulfated at a higher rate in human intestine than in liver. Eur J Clin Pharmacol 45:483–487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was carried out with the support of WADA (reference number 071007WS), the Federal Ministry of the Interior of the Federal Republic of Germany and the Manfred-Donike Institute for Doping Analysis, Cologne, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Orlovius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlovius, A.K., Guddat, S., Gütschow, M. et al. In vitro synthesis and characterisation of three fenoterol sulfoconjugates detected in fenoterol post-administration urine samples. Anal Bioanal Chem 405, 9477–9487 (2013). https://doi.org/10.1007/s00216-013-7383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7383-2

Keywords