Skip to main content

Advertisement

Log in

An automated headspace solid-phase microextraction followed by gas chromatography–mass spectrometry method to determine macrocyclic musk fragrances in wastewater samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L−1 range between 0.75 and 5 ng L−1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n = 5, 1,000 ng L−1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L−1) and WWTP B (12.29 μg L−1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L−1.

Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bester K (2007) Personal care compounds in the environment. Wiley, Weinheim

    Google Scholar 

  2. Kraft P, Cadalbert R (2001) Chem Eur J 7:3254–3262

    Article  CAS  Google Scholar 

  3. Kraft P, Fráter G (2001) Chirality 13:388–394

    Article  CAS  Google Scholar 

  4. Osemwengie LI (2006) J Environ Monitor 8:897–903

    Article  CAS  Google Scholar 

  5. Herren D, Berset JD (2000) Chemosphere 40:565–574

    Article  CAS  Google Scholar 

  6. Matamoros V, Nguyen LX, Arias CA, Nielsen S, Laugen MM, Brix H (2012) Water Res 46:3889–3896

    Article  CAS  Google Scholar 

  7. García-Jares C, Llompart M, Polo M, Salgado C, Macias S, Cela R (2002) J Chromatogr A 963:277–285

    Article  Google Scholar 

  8. Vallecillos L, Pocurull E, Borrull F (2012) J Chromatogr A 1264:87–94

    Article  CAS  Google Scholar 

  9. Liu HT, Liu L, Xiong YQ, Yang XM, Luan TG (2010) J Chromatogr A 1217:6747–6753

    Article  CAS  Google Scholar 

  10. Wu S-F, Ding W-H (2010) J Chromatogr A 1217:2776–2781

    Article  CAS  Google Scholar 

  11. Vallecillos L, Borrull F, Pocurull E (2012) J Sep Sci 35:2735–2742

    Article  CAS  Google Scholar 

  12. Vallecillos L, Pocurull E, Borrull F (2012) Talanta 99:824–832

    Article  CAS  Google Scholar 

  13. López-Nogueroles M, Chisvert A, Salvador A, Carretero A (2011) Talanta 85:1990–1995

    Article  Google Scholar 

  14. Moeder M, Schrader S, Winkler U, Rodil R (2010) J Chromatogr A 1217:2925–2932

    Article  CAS  Google Scholar 

  15. Pawliszyn J (1997) Solid phase microextraction: theory and practise. Wiley, New York

    Google Scholar 

  16. Magdic S, Pawliszyn JB (1996) J Chromatogr A 723:111–122

    Article  CAS  Google Scholar 

  17. Polo M, Llompart M, García-Jares C, Cela R (2005) J Chromatogr A 1072:63–72

    Article  CAS  Google Scholar 

  18. Polo M, Llompart M, García-Jares C, Gómez-Noya G, Bollain M-H, Cela R (2006) J Chromatogr A 1124:11–21

    Article  CAS  Google Scholar 

  19. Barro R, Ares S, García-Jares C, Llompart M, Cela R (2005) Anal Bioanal Chem 381:255–260

    Article  CAS  Google Scholar 

  20. Wang YC, Ding W-H (2009) J Chromatogr A 1216:6858–6863

    Article  CAS  Google Scholar 

  21. Polo M, García-Jares C, Llompart M, Cela R (2007) Anal Bioanal Chem 388:1789–98

    Article  CAS  Google Scholar 

  22. Machado S, Gonçalves C, Cunha E, Guimarães A, Alpendurada MF (2011) Talanta 84:1133–1140

    Article  CAS  Google Scholar 

  23. Wuilloud RG, de Wuilloud JCA, Vonderheide AP, Caruso JA (2003) J Anal At Spectrom 18:1119–1124

    Article  CAS  Google Scholar 

  24. Howard KL, Mike JH, Riesen R (2005) Am J Enol Vitic 56:37–45

    CAS  Google Scholar 

  25. Koziel JA, Odziemkowski M, Pawliszyn J (2001) Anal Chem 73:47–54

    Article  CAS  Google Scholar 

  26. Llompart M, Li K, Fingas M (1999) Talanta 48:451–459

    Article  CAS  Google Scholar 

  27. Regueiro J, García-Jares C, Llompart M, Lamas JP, Cela R (2009) J Chromatogr A 1216:2805–2815

    Article  CAS  Google Scholar 

  28. Tankeviciute A, Kazlauskas R, Vickackaite V (2001) Analyst 126:1674–1677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided to this study by the Dirección General de Investigación of the Spanish Ministry of Science and Innovation and the Direcció General de Recerca of the Catalan Government through the projects CTM2011-28765-C02-01 and 2009SGR223 respectively. We would also like to thank the personnel at the wastewater treatment plants for their cooperation in all aspects of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Borrull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallecillos, L., Borrull, F. & Pocurull, E. An automated headspace solid-phase microextraction followed by gas chromatography–mass spectrometry method to determine macrocyclic musk fragrances in wastewater samples. Anal Bioanal Chem 405, 9547–9554 (2013). https://doi.org/10.1007/s00216-013-7375-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7375-2

Keywords