Skip to main content

Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography–tandem mass spectrometry

Abstract

The neonicotinoids have recently been identified as a potential contributing factor to the sudden decline in adult honeybee population, commonly known as colony collapse disorder (CCD). To protect the health of honeybees and other pollinators, a new, simple, and sensitive liquid chromatography-electrospray ionization mass spectrometry method was developed and validated for simultaneous determination of eight neonicotinoids, including acetamiprid, clothianidin, dinotefuran, flonicamid, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam, in pollen and high-fructose corn syrup (HFCS). In this method, eight neonicotinoids, along with their isotope-labeled internal standards, were extracted from 2 g of pollen or 5 g of HFCS using an optimized quick, easy, cheap, effective, rugged, and safe extraction procedure. The method limits of detection in pollen and HFCS matrices were 0.03 ng/g for acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam and ranged between 0.03 and 0.1 ng/g for nitenpyram and flonicamid. The precision and accuracy were well within the acceptable 20 % range. Selectivity, linearity, lower limit of quantitation, matrix effect, recovery, and stability in autosampler were also evaluated during validation. This validated method has been used successfully in analyzing a set of pollen and HFCS samples collected for evaluating potential honeybee exposure to neonicotinoids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rortaisa A, Arnolda G, Halmb M-P, Touffet-Briensb F (2005) Apidologie 36:71–83

    Article  Google Scholar 

  2. Gross M (2008) Curr Biol 18:R684

    CAS  Article  Google Scholar 

  3. Chensheng L, Kenneth MW, Richard AC (2012) Bull Insectology 65:99–107

    Google Scholar 

  4. Decourtye A, Devillers J (2010) Adv Exp Med Biol 683:85–95

    CAS  Article  Google Scholar 

  5. Stoner KA, Eitzer BD (2012) PLoS One 7(e39114):1–5

    Google Scholar 

  6. Bonmatin JM, Moineau I, Charvet R, Fleche C, Colin ME, Bengsch ER (2003) Anal Chem 75:2027–2033

    CAS  Article  Google Scholar 

  7. Chauzat MP, Faucon JP, Martel AC, Lachaize J, Cougoule N, Aubert M (2006) J Econ Entomol 99:253–262

    CAS  Article  Google Scholar 

  8. Blacquière T, Smagghe G, van Gestel CA, Mommaerts V (2012) Ecotoxicology 21:973–992

    Article  Google Scholar 

  9. Kim HJ, Shelver WL, Hwang EC, Xu T, Li QX (2006) Anal Chim Acta 571:66–73

    CAS  Article  Google Scholar 

  10. Uchigashima M, Watanabe E, Ito S, Iwasa S, Miyake S (2012) Sensors 12:15858–15872

    CAS  Article  Google Scholar 

  11. Watanabe E, Eun H, Baba K, Arao T, Ishii Y, Endo S, Ueji M (2004) J Agric Food Chem 52:2756–2762

    CAS  Article  Google Scholar 

  12. Wang R, Wang Z, Yang H, Wang Y, Deng A (2012) J Sci Food Agric 92:1253–1260

    CAS  Article  Google Scholar 

  13. Seccia S, Fidente P, Montesano D, Morrica P (2008) J Chromatogr A 1214:115–120

    CAS  Article  Google Scholar 

  14. Singh SB, Foster GD, Khan SU (2004) J Agric Food Chem 52:105–109

    CAS  Article  Google Scholar 

  15. Watanabe E, Baba K, Eun H (2007) J Agric Food Chem 55:3798–3804

    CAS  Article  Google Scholar 

  16. Ferrer I, Thurman EM, Zweigenbaum J (2011) Methods Mol Biol 747:193–218

    CAS  Article  Google Scholar 

  17. Fidente P, Seccia S, Vanni F, Morrica P (2005) J Chromatogr A 1094:175–178

    CAS  Article  Google Scholar 

  18. Kamel A, Qian Y, Kolbe E, Stafford C (2010) J AOAC Int 93:389–399

    CAS  Google Scholar 

  19. Liu S, Zheng Z, Wei F, Ren Y, Gui W, Wu H, Zhu G (2010) J Agric Food Chem 58:3271–3278

    CAS  Article  Google Scholar 

  20. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2003) J Agric Food Chem 51:2501–2505

    CAS  Article  Google Scholar 

  21. Tanner G, Czerwenka C (2011) J Agric Food Chem 59:12271–12277

    CAS  Article  Google Scholar 

  22. Xiao Z, Li X, Wang X, Shen J, Ding S (2011) J Chromatogr B 879:117–122

    CAS  Article  Google Scholar 

  23. Xie W, Han C, Qian Y, Ding H, Chen X, Xi J (2011) J Chromatogr A 1218:4426–4433

    CAS  Article  Google Scholar 

  24. Zhang F, Li Y, Yu C, Pan C (2012) Bull Environ Contam Toxicol 88:885–890

    CAS  Article  Google Scholar 

  25. Payá P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A (2007) Anal Bioanal Chem 389:1697–1714

    Article  Google Scholar 

  26. García-Chao M, Agruña MJ, Flores Calvete G, Sakkas V, Llompart M, Dagnac T (2010) Anal Chim Acta 672:107–113

    Article  Google Scholar 

  27. Kamel A (2010) J Agric Food Chem 58:5926–5931

    CAS  Article  Google Scholar 

  28. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS (2010) PLoS One 5:e9754

    Article  Google Scholar 

  29. Wiest L, Buleté A, Giroud B, Fratta C, Amic S, Lambert O, Pouliquen H, Arnaudguilhem C (2011) J Chromatogr A 1218:5743–5756

    CAS  Article  Google Scholar 

  30. EU guidance SANCO/825/00 rev (2010) 8.1

  31. Bernal J, Garrido-Bailón E, Del Nozal MJ, González-Porto AV, Martín-Hernández R, Diego JC, Jiménez JJ, Bernal JL, Higes M (2010) J Econ Entomol 103:1964–1971

    CAS  Article  Google Scholar 

  32. Kmellar B, Abranko L, Fodor P, Lehotay SJ (2010) Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:1415–1430

    CAS  Article  Google Scholar 

  33. Lehotay SJ, Mastovska K, Lightfield AR (2005) J AOAC Int 88:615–662

    CAS  Google Scholar 

  34. Randall JW (2005) In: Kuo TM, Garnder HW (eds) Lipid biotechnology. Marcel Dekker, New York

  35. Pesticide properties database (2011) University of Hertfordshire, Hertfordshire, UK

  36. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P (2013) J Agric Food Chem 61:708–718

    CAS  Article  Google Scholar 

  37. Gensberger S, Mittelmaier S, Glomb MA, Pischetsrieder M (2012) Anal Bioanal Chem 403:2923–2931

    CAS  Article  Google Scholar 

  38. Chauzat MP, Carpentier P, Martel AC, Bougeard S, Cougoule N, Porta P, Lachaize J, Madec F, Aubert M, Faucon JP (2009) Environ Entomol 38:514–523

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Harvard-NIEHS Center for Environmental Health (ES000002) Pilot Project Program. The authors would like to thank Dr. Christine Austin (from the University of Sydney, Sydney, Australia) for her assistance in the method development and Ms. Michaela Kapp (at the Harvard School of Public Health) for her assistance in the sample collections as well as in the preparation of this manuscript. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chensheng Lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, M., Collins, E.M., Tao, L. et al. Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 405, 9251–9264 (2013). https://doi.org/10.1007/s00216-013-7338-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7338-7

Keywords

  • Neonicotinoid insecticides
  • Pollen
  • HFCS
  • QuEChERS
  • LC-MS/MS