Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 11, pp 2975–2983 | Cite as

Polyfluorinated substances in abiotic standard reference materials

  • Jessica L. ReinerEmail author
  • Andrea C. Blaine
  • Christopher P. Higgins
  • Carin Huset
  • Thomas M. Jenkins
  • Christiaan J. A. F. Kwadijk
  • Cleston C. Lange
  • Derek C. G. Muir
  • William K. Reagen
  • Courtney Rich
  • Jeff M. Small
  • Mark J. Strynar
  • John W. Washington
  • Hoon Yoo
  • Jennifer M. Keller
Research Paper
Part of the following topical collections:
  1. Reference Materials for Chemical Analysis

Abstract

The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, method validation, and measurement for contaminants that are now of concern. NIST and multiple groups have been measuring the mass fraction of a group of emerging contaminants, polyfluorinated substances (PFASs), in a variety of SRMs. Here we report levels determined in an interlaboratory comparison of up to 23 PFASs determined in five SRMs: sediment (SRMs 1941b and 1944), house dust (SRM 2585), soil (SRM 2586), and sludge (SRM 2781). Measurements presented show an array of PFASs, with perfluorooctane sulfonate being the most frequently detected. SRMs 1941b, 1944, and 2586 had relatively low concentrations of most PFASs measured while 23 PFASs were at detectable levels in SRM 2585 and most of the PFASs measured were at detectable levels in SRM 2781. The measurements made in this study were used to add values to the Certificates of Analysis for SRMs 2585 and 2781.

Keywords

Polyfluorinated substances Standard reference materials Sediment Sludge House dust Interlaboratory comparison exercise 

Notes

Acknowledgments

We would like to thank N. A. Heckert of the NIST Statistical Engineering Division for statistical analysis of the results as part of the value assignment process for the SRMs.

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Supplementary material

216_2013_7330_MOESM1_ESM.pdf (599 kb)
ESM 1 (PDF 598 kb)

References

  1. 1.
    Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Tech 35:1339–1342CrossRefGoogle Scholar
  2. 2.
    Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy JP (2002) Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean seas. Environ Sci Tech 36:3210–3216CrossRefGoogle Scholar
  3. 3.
    Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N (2003) A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Tech 37:2634–2639CrossRefGoogle Scholar
  4. 4.
    Tomy GT, Budakowski W, Halldorson T, Helm PA, Stern GA, Friesen K, Pepper K, Tittlemier SA, Fisk AT (2004) Fluorinated organic compounds in an eastern Arctic marine food web. Environ Sci Tech 38:6475–6481CrossRefGoogle Scholar
  5. 5.
    Olivero-Verbel J, Tao L, Johnson-Restrepo B, Guette-Fernández J, Baldiris-Avila R, O’Byrne-Hoyos I, Kannan K (2006) Perfluorooctanesulfonate and related fluorochemicals in biological samples from the north coast of Colombia. Environ Poll 142:367–372CrossRefGoogle Scholar
  6. 6.
    Lofstrand K, Jorundsdottir H, Tomy G, Svavarsson J, Weihe P, Nygard T, Bergman A (2008) Spatial trends of polyfluorinated compounds in guillemot (Uria aalge) eggs from North-Western Europe. Chemosphere 72:1475–1480CrossRefGoogle Scholar
  7. 7.
    Becker AM, Gerstmann S, Frank H (2010) Perfluorooctanoic acid and perfluorooctane sulfonate in two fish species collected from the Roter Main River, Bayreuth, Germany. Bull Environ Contam Tox 84:132–135CrossRefGoogle Scholar
  8. 8.
    Cai YQ, Pan YY, Shi YL, Wang JM, Jin XL (2011) Pilot investigation of perfluorinated compounds in river water, sediment, soil and fish in Tianjin, China. B Environ Contam Tox 87:152–157CrossRefGoogle Scholar
  9. 9.
    Sepulvado JG, Blaine AC, Hundal LS, Higgins CP (2011) Occurrence and fate of perfluorochemicals in soil following the land application of municipal biosolids. Environ Sci Tech 45:8106–8112CrossRefGoogle Scholar
  10. 10.
    UNEP (2006) Draft risk profile: perfluorooctane sulfonate (PFOS). Stockholm convention on persistent organic pollutants. United Nations Environment Programme, GenevaGoogle Scholar
  11. 11.
    Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA (2005) Perfluorochemicals: potential sources of and migration from food packaging. Food Add Contam 22:1023–1031CrossRefGoogle Scholar
  12. 12.
    Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Tech 43:386–392CrossRefGoogle Scholar
  13. 13.
    Olsen GW, Lange CC, Ellefson ME, Mair DC, Church TR, Goldberg CL, Herron RM, Medhdizadehkashi Z, Nobiletti JB, Rios JA, Reagen WK, Zobel LR (2012) Temporal trends of perfluoroalkyl concentrations in American red cross adult blood donors, 2000–2010. Environ Sci Technol 46:6330–6338CrossRefGoogle Scholar
  14. 14.
    Ahrens L, Herzke D, Huber S, Bustnes JO, Bangjord G, Ebinghaus R (2011) Temporal trends and pattern of polyfluoroalkyl compounds in tawny owl (strix aluco) eggs from Norway, 1986–2009. Environ Sci Tech 45:8090–8097CrossRefGoogle Scholar
  15. 15.
    Braune BM, Outridge PM, Fisk AT, Muir DCG, Helm PA, Hobbs K, Hoekstra PF, Kuzyk ZA, Kwan M, Letcher RJ, Lockhart WL, Norstrom RJ, Stern GA, Stirling I (2005) Persistent organic pollutants and mercury in marine biota of the Canadian arctic: an overview of spatial and temporal trends. Sci Total Environ 351:4–56CrossRefGoogle Scholar
  16. 16.
    Butt CM, Berger U, Bossi R, Tomy GT (2010) Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 408:2936–2965CrossRefGoogle Scholar
  17. 17.
    Chen CL, Lu YL, Zhang X, Geng J, Wang TY, Shi YJ, Hu WY, Li J (2009) A review of spatial and temporal assessment of PFOS and PFOA contamination in China. Chem Ecol 25:163–177CrossRefGoogle Scholar
  18. 18.
    Kratzer J, Ahrens L, Roos A, Backlin BM, Ebinghaus R (2011) Temporal trends of polyfluoroalkyl compounds (PFCs) in liver tissue of grey seals (Halichoerus grypus) from the Baltic Sea, 1974–2008. Chemosphere 84:1592–1600CrossRefGoogle Scholar
  19. 19.
    O’Connell SG, Arendt M, Segars A, Kimmel T, Braun-McNeill J, Avens L, Schroeder B, Ngai L, Kucklick JR, Keller JM (2010) Temporal and spatial trends of perfluorinated compounds in Juvenile loggerhead sea turtles (Caretta caretta) along the East Coast of the United States. Environ Sci Tech 44:5202–5209CrossRefGoogle Scholar
  20. 20.
    Smithwick M, Norstrom RJ, Mabury SA, Solomon K, Evans TJ, Stirling I, Taylor MK, Muir DC (2006) Temporal trends of perfluoroalkyl contaminants in polar bears (Ursus maritimus) from two locations in the North American Arctic, 1972–2002. Environ Sci Tech 40:1139–1143CrossRefGoogle Scholar
  21. 21.
    Reiner JL, O’Connell SG, Moors AJ, Kucklick JR, Becker PR, Keller JM (2011) Spatial and temporal trends of perfluorinated compounds in beluga whales (Delphinapterus leucas) from Alaska. Environ Sci Tech 45:8129–8136CrossRefGoogle Scholar
  22. 22.
    van Leeuwen SPJ, Swart CP, van der Veen I, de Boer J (2009) Significant improvements in the analysis of perfluorinated compounds in water and fish: results from an interlaboratory method evaluation study. J Chrom A 1216:401–409CrossRefGoogle Scholar
  23. 23.
    Van Leeuwen SPJ, Karrman A, Van Bavel B, De Boer J, Lindstrom G (2006) Struggle for quality in determination of perfluorinated contaminants in environmental and human samples. Environ Sci Tech 40:7854–7860CrossRefGoogle Scholar
  24. 24.
    Lindstrom G, Karrman A, van Bavel B (2009) Accuracy and precision in the determination of perfluorinated chemicals in human blood verified by interlaboratory comparisons. J Chrom A 1216:394–400CrossRefGoogle Scholar
  25. 25.
    Longnecker MP, Smith CS, Kissling GE, Hoppin JA, Butenhoff JL, Decker E, Ehresman DJ, Ellefson ME, Flaherty J, Gardner MS, Langlois E, LeBlanc A, Lindstrom AB, Reagen WK, Strynar MJ, Studabaker WB (2008) An interlaboratory study of perfluorinated alkyl compound levels in human plasma. Environ Res 107:152–159CrossRefGoogle Scholar
  26. 26.
    Martin JW, Kannan K, Berger U, De Voogt P, Field J, Franklin J, Giesy JP, Harner T, Muir DCG, Scott B, Kaiser M, Jarnberg U, Jones KC, Mabury SA, Schroeder H, Simcik M, Sottani C, Van Bavel B, Karrman A, Lindstrom G, Van Leeuwen S (2004) Analytical challenges hamper perfluoroalky research. Environ Sci Tech 38:248A–255ACrossRefGoogle Scholar
  27. 27.
    Keller JM, Calafat AM, Kato K, Ellefson ME, Reagen WK, Strynar M, O’Connell S, Butt CM, Mabury SA, Small J, Muir DCG, Leigh SD, Schantz MM (2010) Determination of perfluorinated alkyl acid concentrations in human serum and milk standard reference materials. Anal Bioanal Chem 397:439–451CrossRefGoogle Scholar
  28. 28.
    Reiner JL, Phinney KW, Keller JM (2011) Determination of perfluorinated compounds in human plasma and serum standard reference materials using independent analytical methods. Anal Bioanal Chem 9:2899–2907CrossRefGoogle Scholar
  29. 29.
    Reiner JL, O’Connell SG, Butt CM, Mabury SA, Small JM, De Silva AO, Muir DC, Delinsky AD, Strynar MJ, Lindstrom AB, Reagen WK, Malinsky M, Schafer S, Kwadijk CJ, Schantz MM, Keller JM (2012) Determination of perfluorinated alkyl acid concentrations in biological standard reference materials. Anal Bioanal Chem 404:2683–2692CrossRefGoogle Scholar
  30. 30.
    Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N (2005) Analysis of fluorotelomer alcohols, fluorotelorner acids, and short- and long-chain perfluorinated acids in water and biota. J Chrom A 1093:89–97CrossRefGoogle Scholar
  31. 31.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefGoogle Scholar
  32. 32.
    Rukhin A (2009) Metrologia 46:323–331CrossRefGoogle Scholar
  33. 33.
    Horn RA, Horn SA, Duncan DB (1975) Estimating hetroscedastic variance in linear models. J Am Stat Assoc 70:380–385CrossRefGoogle Scholar
  34. 34.
    Metrology JCFGI (2008) Evaluation of measurement data — guide to the expression of uncertainty in measurement (ISO GUM 1995 with minor corrections)Google Scholar
  35. 35.
    Metrology JCFGI (2008) Evaluation of measurement data – Supplement 1 to the guide to expression of uncertainty in measurement; propagation of distributions using a Monte Carlo methodGoogle Scholar
  36. 36.
    Bao J, Liu W, Liu L, Jin YH, Ran XR, Zhang ZX (2010) Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China. Chemosphere 80:123–130CrossRefGoogle Scholar
  37. 37.
    Higgins CP, Field JA, Criddle CS, Luthy RG (2005) Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Tech 39:3946–3956CrossRefGoogle Scholar
  38. 38.
    Gomez C, Vicente J, Echavarri-Erasun B, Porte C, Lacorte S (2011) Occurrence of perfluorinated compounds in water, sediment and mussels from the Cantabrian Sea (North Spain). Marine Poll Bull 62:948–955CrossRefGoogle Scholar
  39. 39.
    Poster DL, Kucklick JR, Schantz MM, Vander Pol SS, Leigh SD, Wise SA (2007) Development of a house dust standard reference material for the determination of organic contaminants. Environ Sci Tech 41:2861–2867CrossRefGoogle Scholar
  40. 40.
    Strynar MJ, Lindstrom AB (2008) Perfluorinated compounds in house dust from Ohio and North Carolina, USA. Environ Sci Tech 42:3751–3756CrossRefGoogle Scholar
  41. 41.
    Bjorklund JA, Thuresson K, De Wit CA (2009) Perfluoroalkyl compounds (PFCs) in indoor dust: concentrations, human exposure estimates, and sources. Environ Sci Tech 43:2276–2281CrossRefGoogle Scholar
  42. 42.
    Hansen KJ, Johnson HO, Eldridge JS, Butenhoff JL, Dick LA (2002) Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ Sci Tech 36:1681–1685CrossRefGoogle Scholar
  43. 43.
    Malinsky MD, Jacoby CB, Reagen WK (2011) Determination of perfluorinated compounds in fish fillet homogenates: method validation and application to fillet homogenates from the Mississippi River. Anal Chim Acta 683:248–257CrossRefGoogle Scholar
  44. 44.
    Yoo H, Washington JW, Jenkins TM, Libelo EL (2009) Analysis of perfluorinated chemicals in sludge: method development and initial results. J Chrom A 1216:7831–7839CrossRefGoogle Scholar
  45. 45.
    Washington JW, Henderson WM, Ellington JJ, Jenkins TM, Evans JJ (2008) Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction. J Chrom A 1181:21–32CrossRefGoogle Scholar
  46. 46.
    Muller CE, De Silva AO, Small J, Williamson M, Wang X, Morris A, Katz S, Gamberg M, Muir DC (2011) Biomagnification of perfluorinated compounds in a remote terrestrial food chain: lichen-caribou-wolf. Environ Sci Tech 45:8665–8673CrossRefGoogle Scholar
  47. 47.
    Kwadijk CJAF, Korytar P, Koelmans AA (2010) Distribution of perfluorinated compounds in aquatic systems in the Netherlands. Environ Sci Tech 44:3746–3751CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jessica L. Reiner
    • 1
    • 2
    Email author
  • Andrea C. Blaine
    • 3
  • Christopher P. Higgins
    • 3
  • Carin Huset
    • 4
  • Thomas M. Jenkins
    • 5
  • Christiaan J. A. F. Kwadijk
    • 6
  • Cleston C. Lange
    • 7
  • Derek C. G. Muir
    • 8
  • William K. Reagen
    • 7
  • Courtney Rich
    • 3
  • Jeff M. Small
    • 8
  • Mark J. Strynar
    • 9
  • John W. Washington
    • 5
  • Hoon Yoo
    • 5
  • Jennifer M. Keller
    • 2
  1. 1.Chemical Sciences DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Chemical Sciences DivisionNational Institute of Standards and TechnologyCharlestonUSA
  3. 3.Colorado School of MinesGoldenUSA
  4. 4.Minnesota Department of HealthSaint PaulUSA
  5. 5.US Environmental Protection AgencyAthensUSA
  6. 6.Wageningen IMARESIjmuidenThe Netherlands
  7. 7.Environmental Laboratory, 3M CompanySt. PaulUSA
  8. 8.Water Science and Technology Directorate, Environment CanadaBurlingtonCanada
  9. 9.US Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations