Electrochemical transduction of DNA hybridization at modified electrodes by using an electroactive pyridoacridone intercalator


A synthetic redox probe structurally related to natural pyridoacridones was designed and electrochemically characterised. These heterocycles behave as DNA intercalators due to their extended planar structure that promotes stacking in between nucleic acid base pairs. Electrochemical characterization by cyclic voltammetry revealed a quasi-reversible electrochemical behaviour occurring at a mild negative potential in aqueous solution. The study of the mechanism showed that the iminoquinone redox moiety acts similarly to quinone involving a two-electron reduction coupled with proton transfer. The easily accessible potential region with respect to aqueous electro-inactive window makes the pyridoacridone ring suitable for the indirect electrochemical detection of chemically unlabelled DNA. Its usefulness as electrochemical hybridization indicator was assessed on immobilised DNA and compared to doxorubicin. The voltamperometric response of the intercalator acts as an indicator of the presence of double-stranded DNA at the electrode surface and allows the selective transduction of immobilised oligonucleotide hybridization at both macro- and microscale electrodes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Res 28(16):3011–3016

    CAS  Article  Google Scholar 

  2. 2.

    Szunerits S, Bouffier L, Calemczuk R, Corso B, Demeunynck M, Descamps E, Defontaine Y, Fiche J-B, Fortin E, Livache T, Mailley P, Roget A, Vieil E (2005) Comparison of different strategies on DNA chip fabrication and DNA-sensing: optical and electrochemical approaches. Electroanalysis 17(22):2001–2017

    CAS  Article  Google Scholar 

  3. 3.

    Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Danley D, West T, Lanfranchi G (2009) Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors 9(4):3122–3148

    CAS  Article  Google Scholar 

  4. 4.

    Mikkelsen SR (1996) Electrochemical biosensors for DNA sequence detection. Electroanalysis 8(1):15–19

    CAS  Article  Google Scholar 

  5. 5.

    Mascini M, Palchetti I, Marrazza G (2001) DNA electrochemical biosensors. Fresenius J Anal Chem 369(1):15–22

    CAS  Article  Google Scholar 

  6. 6.

    Gooding JJ (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14(17):1149–1156

    CAS  Article  Google Scholar 

  7. 7.

    Cosnier S, Mailley P (2008) Recent advances in DNA biosensors. Analyst 133(8):984–991

    CAS  Article  Google Scholar 

  8. 8.

    Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108(1):109–139

    CAS  Article  Google Scholar 

  9. 9.

    Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112(6):3427–3481

    Article  Google Scholar 

  10. 10.

    Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555–1567

    CAS  Article  Google Scholar 

  11. 11.

    Gebala M, Stoica L, Neugebauer S, Schuhmann W (2009) Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21(3–5):325–331

    CAS  Article  Google Scholar 

  12. 12.

    Grützke S, Abdali S, Schuhmann W, Gebala M (2012) Detection of DNA hybridization using electrochemical impedance spectroscopy and surface enhanced Raman scattering. Electrochem Commun 19:59–62

    Article  Google Scholar 

  13. 13.

    Lassalle N, Mailley P, Vieil E, Livache T, Roget A, Correia JP, Abrantes LM (2001) Electronically conductive polymer grafted with oligonucleotides as electrosensors of DNA: preliminary study of real time monitoring by in situ techniques. J Electroanal Chem 509(1):48–57

    CAS  Article  Google Scholar 

  14. 14.

    Garnier F, Korri-Youssoufi H, Srivastava P, Mandrand B, Delair T (1999) Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles. Synth Met 100(1):89–94

    CAS  Article  Google Scholar 

  15. 15.

    Reisberg S, Piro B, Noël V, Pham MC (2005) DNA electrochemical sensor based on conducting polymer: dependence of the “signal-on” detection on the probe sequence localization. Anal Chem 77(10):3351–3356

    CAS  Article  Google Scholar 

  16. 16.

    Caruana DJ, Heller A (1999) Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-μm-diameter microelectrode. J Am Chem Soc 121(4):769–774

    CAS  Article  Google Scholar 

  17. 17.

    Patolsky F, Lichtenstein A, Willner I (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol 19(3):253–257

    CAS  Article  Google Scholar 

  18. 18.

    Cosnier S, Ionescu RE, Herrmann S, Bouffier L, Demeunynck M, Marks RS (2006) An electro-enzymatic polypyrrole-intercalator sensor for determination of the West Nile Virus DNA. Anal Chem 78(19):7054–7057

    CAS  Article  Google Scholar 

  19. 19.

    Wang J, Xu D, Kawde A-N, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73(22):5576–5581

    CAS  Article  Google Scholar 

  20. 20.

    Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 73(18):4450–4456

    CAS  Article  Google Scholar 

  21. 21.

    Erdem A, Ozsoz M (2002) Electrochemical DNA biosensors based on DNA-drug interactions. Electroanalysis 14(14):965–974

    CAS  Article  Google Scholar 

  22. 22.

    Ferapontova E (2011) Electrochemical indicators for DNA electroanalysis. Curr Anal Chem 7(1):51–62

    CAS  Article  Google Scholar 

  23. 23.

    Bouffier L, Demeunynck M, Milet A, Dumy P (2004) Reactivity of pyrido[4,3,2-kl]acridines: regioselective formation of 6-substituted derivatives. J Org Chem 69(23):8144–8147

    CAS  Article  Google Scholar 

  24. 24.

    Bouffier L, Dinica R, Debray J, Dumy P, Demeumynck M (2009) Functionalization of A ring of pyridoacridine as a route toward greater structural diversity. Synthesis of an octacyclic analogue of eilatin. Bioorg Med Chem Lett 19(16):4836–4838

    CAS  Article  Google Scholar 

  25. 25.

    Bouffier L, Baldeyrou B, Hildebrant M-P, Lansiaux A, David-Cordonnier M-H, Carrez D, Croisy A, Renaudet O, Dumy P, Demeunynck M (2006) Amino- and glycoconjugates of pyrido[4,3,2-kl]acridine. Synthesis, antitumor activity and DNA binding. Bioorg Med Chem 14(22):7520–7530

    CAS  Article  Google Scholar 

  26. 26.

    Bouffier L, Gosse I, Demeunynck M, Mailley P, Bioelectrochemistry (2012) Electrochemistry and bioactivity relationship of 6-substituted-4H-pyrido[4,3,2-kl]acridin-4-one antitumor drug candidates. Bioelectrochemistry 88:103–109

    CAS  Article  Google Scholar 

  27. 27.

    Molinski TF (1993) Marine pyridoacridine alkaloids: structure, synthesis, and biological chemistry. Chem Rev 93(5):1825–1838

    CAS  Article  Google Scholar 

  28. 28.

    Ding O, Chichak K, Lown JW (1999) Pyrroloquinoline and pyridoacridine alkaloids from marine sources. Curr Med Chem 6(1):1–28

    CAS  Google Scholar 

  29. 29.

    Delfourne E, Bastide J (2003) Marine pyridoacridine alkaloids and synthetic analogues as antitumor agents. Med Res Rev 23(2):234–252

    CAS  Article  Google Scholar 

  30. 30.

    Marshall KM, Barrows LR (2004) Biological activities of pyridoacridines. Nat Prod Rep 21(6):731–751

    CAS  Article  Google Scholar 

  31. 31.

    Wang B, Bouffier L, Demeunynck M, Mailley P, Roget A, Livache T, Dumy P (2004) New acridone derivatives for the electrochemical DNA-hybridisation labelling. Bioelectrochemistry 63(1–2):233–237

    CAS  Article  Google Scholar 

  32. 32.

    Guedon P, Livache T, Martin F, Lesbre F, Roget A, Bidan G, Levy Y (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by surface plasmon resonance imaging. Anal Chem 72(24):6003–6009

    CAS  Article  Google Scholar 

  33. 33.

    Livache T, Fouque B, Roget A, Marchand J, Bidan G, Téoule R, Mathis G (1998) Polypyrrole DNA chip on a silicon device: example of hepatitis C virus genotyping. Anal Biochem 255(2):188–194

    CAS  Article  Google Scholar 

  34. 34.

    Crawford PW, Gross F, Lawson K, Chen CC, Dong Q, Liu DF, Luo Y, Szczepankiewicz BG, Heathcock CH (1997) Electrochemical properties of some biologically active quinone derivatives: furanquinones, pyridoquinones, and diplamine, a cytotoxic pyridoacridine alkaloid. J Electrochem Soc 144(11):3710–3715

    CAS  Article  Google Scholar 

  35. 35.

    Matsumoto SS, Biggs J, Copp BR, Holden JA, Barrows LR (2003) Mechanism of ascididemin-induced cytotoxicity. Chem Res Toxicol 16(2):113–122

    CAS  Article  Google Scholar 

  36. 36.

    Bouffier L, Lister K, Higgins SJ, Nichols RJ, Doneux T (2012) Electrochemical investigations of dissolved and surface immobilised 2-amino-1,4-naphthoquinones in aqueous solutions. J Electroanal Chem 664:80–87

    CAS  Article  Google Scholar 

  37. 37.

    Deféver T, Druet M, Evrard D, Marchal D, Limoges B (2011) Real-time electrochemical PCR with a DNA intercalating redox probe. Anal Chem 83(5):1815–1821

    Article  Google Scholar 

  38. 38.

    Lamm G, Pack GR (1990) Acidic domains around nucleic acids. Proc Natl Acad Sci U S A 87(22):9033–9036

    CAS  Article  Google Scholar 

  39. 39.

    Minehan DS, Marx KA, Tripathy SK (1994) Kinetics of DNA binding to electrically conducting polypyrrole films. Macromolecules 27(3):777–783

    CAS  Article  Google Scholar 

  40. 40.

    Palecek E, Fojta M, Tomschik M, Wang J (1998) Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron 13(6):621–628

    CAS  Article  Google Scholar 

  41. 41.

    Piedade JAP, Fernandes IR, Oliveira-Brett AM (2002) Electrochemical sensing of DNA—adriamycin interactions. Bioelectrochemistry 56(1–2):81–83

    CAS  Article  Google Scholar 

  42. 42.

    Oliveira-Brett AM, Vivan M, Fernandes IR, Piedade JAP (2002) Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta 56(5):959–970

    CAS  Article  Google Scholar 

  43. 43.

    Chiti G, Marrazza G, Mascini M (2001) Electrochemical DNA biosensor for environmental monitoring. Anal Chim Acta 427(2):155–164

    CAS  Article  Google Scholar 

  44. 44.

    Livache T, Roget A, Dejean E, Barthet C, Bidan G, Teoule R (1994) Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res 22(15):2915–2921

    CAS  Article  Google Scholar 

  45. 45.

    Bouffier L, Yiu HHP, Rosseinsky MJ (2011) Chemical grafting of a DNA intercalator probe onto functional iron oxide nanoparticles: a physicochemical study. Langmuir 27(10):6185–6192

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Laurent Bouffier.

Additional information

Published in the special issue Analytical Science in France with guest editors Christian Rolando and Philippe Garrigues.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bouffier, L., Wang, B.S., Roget, A. et al. Electrochemical transduction of DNA hybridization at modified electrodes by using an electroactive pyridoacridone intercalator. Anal Bioanal Chem 406, 1163–1172 (2014). https://doi.org/10.1007/s00216-013-7314-2

Download citation


  • DNA hybridization
  • Redox intercalator
  • Pyridoacridone
  • Doxorubicin
  • DNA microsensor