Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 123–137 | Cite as

Lactate biosensors: current status and outlook

  • Liza Rassaei
  • Wouter Olthuis
  • Seiya Tsujimura
  • Ernst J. R. Sudhölter
  • Albert van den Berg
Review

Abstract

Many research efforts over the last few decades have been devoted to sensing lactate as an important analytical target in clinical care, sport medicine, and food processing. Therefore, research in designing lactate sensors is no longer in its infancy and now is more directed toward viable sensors for direct applications. In this review, we provide an overview of the most immediate and relevant developments toward this end, and we discuss and assess common transduction approaches. Further, we critically describe the pros and cons of current commercial lactate sensors and envision how future sensing design may benefit from emerging new technologies.

Keywords

Lactate sensors Biosensors Enzymatic sensors Electrochemical sensors Optical sensors Noninvasive sensors 

References

  1. 1.
    Kemp G (2005) Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle. Am J Physiol Regul Integr Comp Physiol 289(3):R895–R901Google Scholar
  2. 2.
    Phypers B, Pierce JT (2006) Lactate physiology in health and disease. Contin Educ Anaesth Crit Care Pain 6(3):128–132Google Scholar
  3. 3.
    Stanley WC, Gertz EW, Wisneski JA, Morris DL, Neese RA, Brooks GA (1985) Systemic lactate kinetics during graded exercise in man. Am J Physiol 249(6 Pt 1):E595–E602Google Scholar
  4. 4.
    Goodwin ML, Harris JE, Hernandez A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1(4):558–569Google Scholar
  5. 5.
    Brooks GA (1985) Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 17(1):22–34Google Scholar
  6. 6.
    Valenza F, Aletti G, Fossali T, Chevallard G, Sacconi F, Irace M, Gattinoni L (2005) Lactate as a marker of energy failure in critically ill patients: hypothesis. Crit Care 9(6):588–593Google Scholar
  7. 7.
    Karlsson J, Willerson JT, Leshin SJ, Mullins CB, Mitchell JH (1975) Skeletal-muscle metabolites in patients with cardiogenic-shock or severe congestive heart failure. Scand J Clin Lab Invest 35(1):73–79Google Scholar
  8. 8.
    Sayeed MM, Murthy PNA (1981) Adenine nucleotide and lactate metabolism in the lung in endotoxin shock. Circ Shock 8(6):657–666Google Scholar
  9. 9.
    DeBacker D, Creteur J, Zhang HB, Norrenberg M, Vincent JL (1997) Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med 156(4 Pt 1):1099–1104Google Scholar
  10. 10.
    Kruse JA, Zaidi SA, Carlson RW (1987) Significance of blood lactate levels in critically ill patients with liver disease. Am J Med 83(1):77–82Google Scholar
  11. 11.
    Bellomo R (2002) Bench-to-bedside review: lactate and the kidney. Crit Care 6(4):322–326Google Scholar
  12. 12.
    Rimachi R, de Carvahlo FB, Orellano-Jimenez C, Cotton F, Vncent JL, De Backer D (2012) Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock. Anaesth Intensive Care 40(3):427–432Google Scholar
  13. 13.
    Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED (2001) Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med 27(1):74–83Google Scholar
  14. 14.
    Heinis AMF, Spaanderman ME, Gunnewiek JMTK, Lotgering FK (2011) Scalp blood lactate for intra-partum assessment of fetal metabolic acidosis. Acta Obstet Gynecol Scand 90(10):1107–1114Google Scholar
  15. 15.
    Heinis AMF, Dinnissen J, Spaanderman MEA, Lotgering FK, Gunnewiek JMTK (2011) Comparison of two point-of-care testing (POCT) devices for fetal lactate during labor. Clin Chem Lab Med 50(1):89–93Google Scholar
  16. 16.
    Kastendieck E, Paulick R, Martius J (1988) Lactate in fetal tissue during hypoxia; correlation to lactate, pH and base deficit in the fetal blood. Eur J Obstet Gynecol Reprod Biol 29(1):61–71Google Scholar
  17. 17.
    Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4):916–921Google Scholar
  18. 18.
    Hirschhaeuser F, Sattler UGA, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925Google Scholar
  19. 19.
    Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin Invest 118(12):3835–3837Google Scholar
  20. 20.
    Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485Google Scholar
  21. 21.
    Cureton EL, Kwan RO, Dozier KC, Sadjadi J, Pal JD, Victorino GP (2010) A different view of lactate in trauma patients: protecting the injured brain. J Surg Res 159(1):468–473Google Scholar
  22. 22.
    Goodman JC, Valadka AB, Gopinath SP, Uzura M, Robertson CS (1999) Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 27(9):1965–1973Google Scholar
  23. 23.
    Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Johnson DA, Harmon HP, Gabbert S, Petillo PA (2012) Lactate as a biomarker for sleep. Sleep 35(9):1209–1222Google Scholar
  24. 24.
    Kriz K, Kraft L, Krook M, Kriz D (2002) Amperometric determination of L-lactate based on entrapment of lactate oxidase on a transducer surface with a semi-permeable membrane using a SIRE technology based biosensor. Application: tomato paste and baby food J Agric Food Chem 50(12):3419–3424Google Scholar
  25. 25.
    Stekelenburg FK, Kant-Muermans MLT (2001) Effects of sodium lactate and other additives in a cooked ham product on sensory quality and development of a strain of Lactobacillus curvatus and Listeria monocytogenes. Int J Food Microbiol 66(3):197–203Google Scholar
  26. 26.
    Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Van Leeuwwenhoek 76(1–4):317–331Google Scholar
  27. 27.
    Lloret A, Boido E, Lorenzo D, Medina K, Carrau F, Dellacassa E, Versini G (2002) Aroma variation in tannat wines: effect of malolactic fermentation on ethyl lactate level and its enantiomeric distribution. Ital J Food Sci 14(2):175–180Google Scholar
  28. 28.
    Smit NJ, Howatson G, Greenfield R (2009) Blood lactate levels as a biomarker for angling-induced stress in tigerfish Hydrocynus vittatus from the Okavango Delta, Botswana. Afr J Aquat Sci 34(3):255–259Google Scholar
  29. 29.
    Nikolaus N, Strehlitz B (2008) Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim Acta 160(1–2):15–55Google Scholar
  30. 30.
    Shinbo T, Sugiura M, Kamo N (1979) Potentiometric enzyme electrode for lactate. Anal Chem 51(1):100–104Google Scholar
  31. 31.
    Omole OO, Brocks DR, Nappert G, Naylor JM, Zello GA (1999) High-performance liquid chromatographic assay of (+/−)-lactic acid and its enantiomers in calf serum. J Chromatogr B: Biomed Sci Appl 727(1–2):23–29Google Scholar
  32. 32.
    Galbán J, Demarcos S, Castillo JR (1993) Fluorometric–enzymatic lactate determination based on enzyme cytochrome b 2 fluorescence. Anal Chem 65(21):3076–3080Google Scholar
  33. 33.
    Wu FQ, Huang YM, Huang CZ (2005) Chemiluminescence biosensor system for lactic acid using natural animal tissue as recognition element. Biosens Bioelectron 21(3):518–522Google Scholar
  34. 34.
    Goh JH, Mason A, Al-Shamma'a AI, Field M, Shackcloth M, Browning P (2011) Non invasive microwave sensor for the detection of lactic acid in cerebrospinal fluid (CSF). J Phys Conf Ser 307:012017Google Scholar
  35. 35.
    Sartain FK, Yang X, Lowe CR (2006) Holographic lactate sensor. Anal Chem 78(16):5664–5670Google Scholar
  36. 36.
    Ren J, Dean Sherry A, Malloy CR (2012) Noninvasive monitoring of lactate dynamics in human forearm muscle after exhaustive exercise by 1H-magnetic resonance spectroscopy at 7 tesla. Magn Reson Med. doi: 10.1002/mrm.24526 Google Scholar
  37. 37.
    Shkil H, Stoica L, Dmytruk K, Smutok O, Gonchar M, Sibirny A, Schuhmann W (2009) Bioelectrochemical detection of L-lactate respiration using genetically modified Hansenula polymorpha yeast cells overexpressing flavocytochrome b 2. Bioelectrochemistry 76(1–2):175–179Google Scholar
  38. 38.
    Smutok O, Dmytruk K, Gonchar M, Sibirny A, Schuhmann W (2007) Permeabilized cells of flavocytochrome b 2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23(5):599–605Google Scholar
  39. 39.
    Romero MR, Ahumada F, Garay F, Baruzzi AM (2010) Amperometric biosensor for direct blood lactate detection. Anal Chem 82(13):5568–5572Google Scholar
  40. 40.
    Wang DL, Heller A (1993) Miniaturized flexible amperometric lactate probe. Anal Chem 65(8):1069–1073Google Scholar
  41. 41.
    Parra A, Casero E, Lorenzo E, Pariente F, Vazquez L (2007) Nanomechanical properties of globular proteins: lactate oxidase. Langmuir 23(5):2747–2754Google Scholar
  42. 42.
    Makovos EB, Liu CC (1985) Measurements of lactate concentration using lactate oxidase and an electrochemical oxygen sensor. Biotechnol Bioeng 27(2):167–170Google Scholar
  43. 43.
    Chen J, Jin YL (2011) Sensitive lactate determination based on acclimated mixed bacteria and palygorskite co-modified oxygen electrode. Bioelectrochemistry 80(2):151–154Google Scholar
  44. 44.
    Salimi A, Noorbakhsh A, Mamkhezri H, Ghavami R (2007) Electrocatalytic reduction of H2O2 and oxygen on the surface of thionin incorporated onto MWCNTs modified glassy carbon electrode: application to glucose detection. Electroanalysis 19(10):1100–1108Google Scholar
  45. 45.
    Cai XH, Ogorevc B, Tavcar G, Wang J (1995) Indium-tin oxide film electrode as catalytic amperometric sensor for hydrogen peroxide. Analyst 120(10):2579–2583Google Scholar
  46. 46.
    Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of L-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129Google Scholar
  47. 47.
    Agui L, Eguilaz M, Pena-Farfal C, Yanez-Sedeno P, Pingarron JM (2009) Lactate dehydrogenase biosensor based on an hybrid carbon nanotube-conducting polymer modified electrode. Electroanalysis 21(3–5):386–391Google Scholar
  48. 48.
    Gamero M, Pariente F, Lorenzo E, Alonso C (2010) Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens Bioelectron 25(9):2038–2044Google Scholar
  49. 49.
    Jena BK, Raj CR (2007) Amperometric L-lactate biosensor based on gold nanoparticles. Electroanalysis 19(7–8):816–822Google Scholar
  50. 50.
    Yu YY, Yang Y, Gu H, Zhou TS, Shi GY (2013) Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate. Biosens Bioelectron 41:511–518Google Scholar
  51. 51.
    He XR, Yu JH, Ge SG, Zhang XM, Lin Q, Zhu H, Feng S, Yuan L, Huang JD (2010) Amperometric L-lactate biosensor based on sol–gel film and multi-walled carbon nanotubes/platinum nanoparticles enhancement. Chin J Anal Chem 38(1):57–61Google Scholar
  52. 52.
    Pereira AC, Kisner A, Tarley CRT, Kubota LT (2011) Development of a carbon paste electrode for lactate detection based on Meldola's blue adsorbed on silica gel modified with niobium oxide and lactate oxidase. Electroanalysis 23(6):1470–1477Google Scholar
  53. 53.
    Shakir I, Shahid M, Yang HW, Cherevko S, Chung CH, Kang DJ (2012) ɑ-MoO3 nanowire-based amperometric biosensor for l-lactate detection. J Solid State Electrochem 16(6):2197–2201Google Scholar
  54. 54.
    Wang YT, Bao YJ, Lou L, Li JJ, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2010) A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. Sensors 2010 I.E. 33–37Google Scholar
  55. 55.
    Yang ML, Wang J, Li HQ, Zheng JG, Wu NQN (2008) A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 19(7):075502Google Scholar
  56. 56.
    Spohn U, Narasaiah D, Gorton L (1996) The influence of the carbon paste composition on the performance of an amperometric bienzyme sensor for L-lactate. Electroanalysis 8(6):507–514Google Scholar
  57. 57.
    Pérez S, Fàbregas E (2012) Amperometric bienzymatic biosensor for L-lactate analysis in wine and beer samples. Analyst 137(16):3854–3861Google Scholar
  58. 58.
    Yang HW, Kim DC, Yoo SH, Park S, Kang DJ (2012) Constructing LBL-assembled functional bio-architecture using gold nanorods for lactate detection. Mater Res Bull 47(10):3056–3060Google Scholar
  59. 59.
    Romero MR, Garay F, Baruzzi AM (2008) Design and optimization of a lactate amperometric biosensor based on lactate oxidase cross-linked with polymeric matrixes. Sens Actuators B Chem 131(2):590–595Google Scholar
  60. 60.
    Wang YT, Yu L, Wang J, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011) A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroanal Chem 661(1):8–12Google Scholar
  61. 61.
    Rahman MM, Shiddiky MJA, Rahman MA, Shim YB (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384(1):159–165Google Scholar
  62. 62.
    Al-Jawadi E, Poller S, Haddad R, Schuhmann W (2012) NADH oxidation using modified electrodes based on lactate and glucose dehydrogenase entrapped between an electrocatalyst film and redox catalyst-modified polymers. Microchim Acta 177(3–4):405–410Google Scholar
  63. 63.
    Yashina EI, Borisova AV, Karyakina EE, Shchegolikhina OI, Vagin MY, Sakharov DA, Tonevitsky AG, Karyakin AA (2010) Sol–gel immobilization of lactate oxidase from organic solvent: toward the advanced lactate biosensor. Anal Chem 82(5):1601–1604Google Scholar
  64. 64.
    Tsuchiya M, Matsuhisa H, Hasebe Y (2012) Selective amperometric response to hydrogen peroxide at a protein-incorporated sol–gel hybrid film-modified platinum electrode. Bunseki Kagaku 61(5):425–428Google Scholar
  65. 65.
    Zanini VP, de Mishima BL, Solis V (2011) An amperometric biosensor based on lactate oxidase immobilized in Laponite-chitosan hydrogel on a glassy carbon electrode. Application to the analysis of L-lactate in food samples Sens Actuators B Chem 155(1):75–80Google Scholar
  66. 66.
    Zanini VP, de Mishima BL, Labbe P, Solis V (2010) An L-lactate amperometric enzyme electrode based on L-lactate oxidase immobilized in a Laponite gel on a glassy carbon electrode. Application to dairy products and red wine Electroanalysis 22(9):946–954Google Scholar
  67. 67.
    Palmisano F, Rizzi R, Centonze D, Zambonin PG (2000) Simultaneous monitoring of glucose and lactate by an interference and cross-talk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosens Bioelectron 15(9–10):531–539Google Scholar
  68. 68.
    Palmisano F, DeBenedetto GE, Zambonin CG (1997) Lactate amperometric biosensor based on an electrosynthesized bilayer film with covalently immobilized enzyme. Analyst 122(4):365–369Google Scholar
  69. 69.
    Parra-Alfambra AM, Casero E, Petit-Dominguez MD, Barbadillo M, Pariente F, Vazquez L, Lorenzo E (2011) New nanostructured electrochemical biosensors based on three-dimensional (3-mercaptopropyl)-trimethoxysilane network. Analyst 136(2):340–347Google Scholar
  70. 70.
    Lin CL, Shih CL, Chau LK (2007) Amperometric L-lactate sensor based on sol–gel processing of an enzyme-linked silicon alkoxide. Anal Chem 79(10):3757–3763Google Scholar
  71. 71.
    Salazar P, Martin M, O'Neill RD, Roche R, Gonzalez-Mora JL (2012) Biosensors based on Prussian blue modified carbon fibers electrodes for monitoring lactate in the extracellular space of brain tissue. Int J Electrochem Sci 7(7):5910–5926Google Scholar
  72. 72.
    Salazar P, Martin M, O'Neill RD, Roche R, Gonzalez-Mora JL (2012) Surfactant-promoted Prussian Blue-modified carbon electrodes: Enhancement of electro-deposition step, stabilization, electrochemical properties and application to lactate microbiosensors for the neurosciences. Colloids Surf B Biointerfaces 92:180–189Google Scholar
  73. 73.
    Shimomura T, Sumiya T, Ono M, Ito T, Hanaoka T (2012) Amperometric L-lactate biosensor based on screen-printed carbon electrode containing cobalt phthalocyanine, coated with lactate oxidase-mesoporous silica conjugate layer. Anal Chim Acta 714:114–120Google Scholar
  74. 74.
    Schmitt RE, Molitor HR, Wu TS (2012) Voltammetric method for the determination of lactic acid using a carbon paste electrode modified with cobalt phthalocyanine. Int J Electrochem Sci 7(11):10835–10841Google Scholar
  75. 75.
    Kulys J, Wang LZ, Maksimoviene A (1993) L-Lactate oxidase electrode based on methylene green and carbon paste. Anal Chim Acta 274(1):53–58Google Scholar
  76. 76.
    Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola blue coimmobilized on multi-wall carbon-nanotube. Sens Actuators B Chem 124(1):269–276Google Scholar
  77. 77.
    Parra A, Casero E, Vazquez L, Jin J, Pariente F, Lorenzo E (2006) Microscopic and voltammetric characterization of bioanalytical platforms based on lactate oxidase. Langmuir 22(12):5443–5450Google Scholar
  78. 78.
    Serban S, El Murr N (2006) Redox-flexible NADH oxidase biosensor: a platform for various dehydrogenase bioassays and biosensors. Electrochim Acta 51(24):5143–5149Google Scholar
  79. 79.
    Mao LQ, Yamamoto K (2000) Amperometric on-line sensor for continuous measurement of hypoxanthine based on osmium-polyvinylpyridine gel polymer and xanthine oxidase bienzyme modified glassy carbon electrode. Anal Chim Acta 415(1–2):143–150Google Scholar
  80. 80.
    Marzouk SAM, Cosofret VV, Buck RP, Yang H, Cascio WE, Hassan SSM (1997) A conducting salt-based amperometric biosensor for measurement of extracellular lactate accumulation in ischemic myocardium. Anal Chem 69(14):2646–2652Google Scholar
  81. 81.
    Haccoun J, Piro B, Tran LD, Dang LA, Pham MC (2004) Reagentless amperometric detection of L-lactate on an enzyme-modified conducting copolymer poly(5-hydroxy-1,4-naphthoquinone-co-5-hydroxy-3-thioacetic acid-1,4-naphthoquinone). Biosens Bioelectron 19(10):1325–1329Google Scholar
  82. 82.
    Gajonyte R, Melvydas V, Malinauskas A (2006) Mediated amperometric biosensors for lactic acid based on carbon paste electrodes modified with Baker's yeast Saccharomyces cerevisiae. Bioelectrochemistry 68(2):191–196Google Scholar
  83. 83.
    Piano M, Serban S, Pittson R, Drago GA, Hart JP (2010) Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola's blue-Reinecke salt, coated with lactate dehydrogenase and NAD(+). Talanta 82(1):34–37Google Scholar
  84. 84.
    Hamdi N, Wang JJ, Monbouquette HG (2005) Polymer films as permselective coatings for H2O2-sensing electrodes. J Electroanal Chem 581(2):258–264Google Scholar
  85. 85.
    Bridge K, Davis F, Collyer S, Higson SPJ (2007) Flexible ultrathin polyDVB/EVB composite membranes for the optimization of a whole blood glucose sensor. Electroanalysis 19(4):487–495Google Scholar
  86. 86.
    Bridge K, Davis F, Collyer SD, Higson SPJ (2007) Flexible ultrathin polyDVB/EVB composite membranes for the optimization of a lactate sensor. Electroanalysis 19(5):567–574Google Scholar
  87. 87.
    Cosnier S (2003) Biosensors based on electropolymerized films: new trends. Anal Bioanal Chem 377(3):507–520Google Scholar
  88. 88.
    Qin C, Chen C, Xie QJ, Wang LH, He XH, Huang Y, Zhou YP, Xie FY, Yang DW, Yao SZ (2012) Amperometric enzyme electrodes of glucose and lactate based on poly(diallyldimethylammonium)-alginate-metal ion-enzyme biocomposites. Anal Chim Acta 720:49–56Google Scholar
  89. 89.
    Radoi A, Moscone D, Palleschi G (2010) Sensing the lactic acid in probiotic yogurts using an L-lactate biosensor coupled with a microdialysis fiber inserted in a flow analysis system. Anal Lett 43(7–8):1301–1309Google Scholar
  90. 90.
    Burmeister JJ, Palmer M, Gerhardt GA (2005) L-Lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens Bioelectron 20(9):1772–1779Google Scholar
  91. 91.
    Tao HY, Cornish VW (2002) Milestones in directed enzyme evolution. Curr Opin Chem Biol 6(6):858–864Google Scholar
  92. 92.
    Campas M, Prieto-Simon B, Marty JL (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20(1):3–9Google Scholar
  93. 93.
    Taurino I, Reiss R, Richter M, Fairhead M, Thöny-Meyer L, Micheli GD, Carrara S (2013) Comparative study of three lactate oxidases from Aerococcus viridans for biosensing applications. Electrochim Acta 93:72–79Google Scholar
  94. 94.
    Lin ZC, Chou JC, Sun TP, Hsiung SK (2008) Development of the potentiometric lactate biosensor based on SnO2/ITO glass electrode. Sens Lett 6(6):855–859Google Scholar
  95. 95.
    Ibupoto ZH, Shah SMUA, Khun K, Willander M (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 12(3):2456–2466Google Scholar
  96. 96.
    Diallo AK, Djeghlaf L, Mazenq L, Launay J, Sant W, Temple-Boyer P (2013) Development of pH-based ElecFET biosensors for lactate ion detection. Biosens Bioelectron 40(1):291–296Google Scholar
  97. 97.
    Lupu A, Valsesia A, Bretagnol F, Colpo P, Rossi F (2007) Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sensor Actuators B Chem 127(2):606–612Google Scholar
  98. 98.
    Khun K, Ibupoto ZH, Chey CO, Lu J, Nur O, Willander M (2013) Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor. Appl Surf Sci 268:37–43Google Scholar
  99. 99.
    Choi MMF (2004) Progress in enzyme-based biosensors using optical transducers. Microchim Acta 148(3–4):107–132Google Scholar
  100. 100.
    Broder G, Weil MH (1964) Excess lactate - index of reversibility of shock in human patients. Science 143(3613):1457–1459Google Scholar
  101. 101.
    Parker CA, Barnes WJ (1957) Some experiments with spectrofluorimeters and filter fluorimeters. Analyst 82(978):606–618Google Scholar
  102. 102.
    McComb RB, Bond LW, Burnett RW, Keech RC, Bowers GN Jr (1976) Determination of the molar absorptivity of NADH. Clin Chem 22(2):141–150Google Scholar
  103. 103.
    Duchen MR, Biscoe TJ (1992) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31Google Scholar
  104. 104.
    Wangsa J, Arnold MA (1988) Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide. Anal Chem 60(10):1080–1082Google Scholar
  105. 105.
    Demarcos S, Galban J, Castillo JR (1995) An enzyme fluorescence quenching method for the determination of lactate in synthetic blood serum. Anal Sci 11(2):233–238Google Scholar
  106. 106.
    Groegel DBM, Link M, Duerkop A, Wolfbeis OS (2011) A new fluorescent PET probe for hydrogen peroxide and its use in enzymatic assays for L-lactate and D-glucose. Chembiochem 12(18):2779–2785Google Scholar
  107. 107.
    Li YS, Gao XF (2007) Determination of various alcohols based on a new immobilized enzyme fluorescence capillary analysis. Anal Chim Acta 588(1):140–146Google Scholar
  108. 108.
    Zhao YY, Gao XF, Li YS, Ju X, Zhang J, Zheng J (2008) Determination of pyruvic acid by using enzymic fluorescence capillary analysis. Talanta 76(2):265–270Google Scholar
  109. 109.
    Li YS, Ju X, Gao XF, Yang W (2009) A novel immobilization enzyme lactate fluorescence capillary biosensor. Chin J Anal Chem 37(5):637–642Google Scholar
  110. 110.
    Wu MH, Cai HY, Xu X, Urban JPG, Cui ZF, Cui Z (2005) A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Biomed Microdevices 7(4):323–329Google Scholar
  111. 111.
    Wu MH, Wang JB, Taha T, Cui ZF, Urban JPG, Cui Z (2007) Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism. Biomed Microdevices 9(2):167–174Google Scholar
  112. 112.
    Zheng XT, Yang HB, Li CM (2010) Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem 82(12):5082–5087Google Scholar
  113. 113.
    Tabata M, Fukunaga C, Ohyabu M, Murachi T (1984) Highly sensitive flow injection analysis of glucose and uric acid in serum using an immobilized enzyme column and chemiluminescence. J Appl Biochem 6(4):251–258Google Scholar
  114. 114.
    Marquette CA, Blum LJ (1999) Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples. Anal Chim Acta 381(1):1–10Google Scholar
  115. 115.
    Sharma A, Quantrill NSM (1994) Measurement of ethanol using fluorescence quenching. Spectrochim Acta A 50(6):1161–1177Google Scholar
  116. 116.
    Sharma A, Quantrill NSM (1994) Measurement of glucose using fluorescence quenching. Spectrochim Acta A 50(6):1179–1193Google Scholar
  117. 117.
    Marquette CA, Degiuli A, Blum LJ (2000) Fiberoptic biosensors based on chemiluminescent reactions. Appl Biochem Biotechnol 89(2–3):107–115Google Scholar
  118. 118.
    Ignatov SG, Ferguson JA, Walt DR (2001) A fiber-optic lactate sensor based on bacterial cytoplasmic membranes. Biosens Bioelectron 16(1–2):109–113Google Scholar
  119. 119.
    Martinez-Olmos A, Ballesta-Claver J, Palma AJ, Valencia-Miron MD, Capitan-Vallvey LF (2009) A portable luminometer with a disposable electrochemiluminescent biosensor for lactate determination. Sensors 9(10):7694–7710Google Scholar
  120. 120.
    Berger A, Blum LJ (1994) Enhancement of the response of a lactate oxidase/peroxidase-based fiberoptic sensor by compartmentalization of the enzyme layer. Enzyme Microb Technol 16(11):979–984Google Scholar
  121. 121.
    Haghighi B, Bozorgzadeh S (2011) Fabrication of a highly sensitive electrochemiluminescence lactate biosensor using ZnO nanoparticles decorated multiwalled carbon nanotubes. Talanta 85(4):2189–2193Google Scholar
  122. 122.
    Leca B, Blum LJ (2000) Luminol electrochemiluminescence with screen-printed electrodes for low-cost disposable oxidase-based optical sensors. Analyst 125(5):789–791Google Scholar
  123. 123.
    Patel NG, Erlenkotter A, Cammann K, Chemnitius GC (2000) Fabrication and characterization of disposable type lactate oxidase sensors for dairy products and clinical analysis. Sensor Actuators B Chem 67(1–2):134–141Google Scholar
  124. 124.
    Claver JB, Miron MCV, Capitan-Vallvey LF (2009) Disposable electrochemiluminescent biosensor for lactate determination in saliva. Analyst 134(7):1423–1432Google Scholar
  125. 125.
    Ballesta-Claver J, Valencia-Miron MC, Capitan-Vallvey LF (2008) One-shot lactate chemiluminescent biosensor. Anal Chim Acta 629(1–2):136–144Google Scholar
  126. 126.
    Scheller F, Schubert F (1992) Biosensors. Techniques and instrumentation in analytical chemistry, vol 11. Elsevier, AmsterdamGoogle Scholar
  127. 127.
    Shkotova L, Goriushkina T, Tran-Minh C, Chovelon J-M, Soldatkin A, Dzyadevych S (2008) Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater Sci Eng C 28(5–6):943–948Google Scholar
  128. 128.
    Spehar-Deleze A, Anastasova S, Popplewell J, Vadgama P (2012) Extreme physiological state: development of tissue lactate sensor. In: Yang G-Z (ed) BSN 2012. Ninth international conference on wearable and implantable body sensor networks. IEEE Computer Society, Los Alamitos, pp 17–21Google Scholar
  129. 129.
    MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87(4):1483–1490Google Scholar
  130. 130.
    Chicharro JL, Lucia A, Perez M, Vaquero AF, Urena R (1998) Saliva composition and exercise. Sports Med 26(1):17–27Google Scholar
  131. 131.
    Marek EM, Volke J, Hawener I, Platen P, Muckenhoff K, Marek W (2010) Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects. J Breath Res 4(1):017105Google Scholar
  132. 132.
    Marek E, Mückenhoff K, Streckert HJ, Becher G, Marek W (2008) Measurements of L-lactate and H2O2 in exhaled breath condensate at rest and mild to moderate exercise in young and healthy subjects. Pneumologie 62(9):541–547Google Scholar
  133. 133.
    Van Haeringen NJ (1981) Clinical biochemistry of tears. Surv Ophthalmol 26(2):84–96Google Scholar
  134. 134.
    van Haeringen NJ, Glasius E (1977) Collection method dependent concentrations of some metabolites in human tear fluid, with special reference to glucose in hyperglycaemic conditions. Albrecht Von Graefes Arch Klin Exp Ophthalmol 202(1):1–7Google Scholar
  135. 135.
    Derbyshire PJ, Barr H, Davis F, Higson SPJ (2012) Lactate in human sweat: a critical review of research to the present day. J Physiol Sci 62(6):429–440Google Scholar
  136. 136.
    Shimojo N, Naka K, Uenoyama H, Hamamoto K, Yoshioka K, Okuda K (1993) Electrochemical assay system with single-use electrode strip for measuring lactate in whole blood. Clin Chem 39(11):2312–2314Google Scholar
  137. 137.
    Saunders AC, Feldman HA, Correia CE, Weinstein DA (2005) Clinical evaluation of a portable lactate meter in type I glycogen storage disease. J Inherit Metab Dis 28(5):695–701Google Scholar
  138. 138.
    Foghandersen N, Altura BM, Altura BT, Siggaardandersen O (1995) Composition of interstitial fluid. Clin Chem 41(10):1522–1525Google Scholar
  139. 139.
    Mendez J, Franklin B, Kollias J (1976) Relationship of blood and saliva lactate and pyruvate concentrations. Biomedicine 25(9):313–314Google Scholar
  140. 140.
    Schabmueller CG, Loppow D, Piechotta G, Schutze B, Albers J, Hintsche R (2006) Micromachined sensor for lactate monitoring in saliva. Biosens Bioelectron 21(9):1770–1776Google Scholar
  141. 141.
    Finsterer J, Mittendorfer B, Neuhuber W, Loscher WN (2002) Influence of disposable, concentric needle electrodes on muscle enzyme and lactate serum levels. J Electromyogr Kinesiol 12(4):329–337Google Scholar
  142. 142.
    Yang Q, Atanasov P, Wilkins E (1999) Needle-type lactate biosensor. Biosens Bioelectron 14(2):203–210Google Scholar
  143. 143.
    Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196Google Scholar
  144. 144.
    Schaupp L, Ellmerer M, Brunner GA, Wutte A, Sendlhofer G, Trajanoski Z, Skrabal F, Pieber TR, Wach P (1999) Direct access to interstitial fluid in adipose tissue in humans by use of open-flow microperfusion. Am J Physiol 276(2):E401–E408Google Scholar
  145. 145.
    Maddocks S, Setchell BP (1988) The composition of extracellular interstitial fluid collected with a push-pull cannula from the testes of adult rats. J Physiol 407:363–372Google Scholar
  146. 146.
    Rong ZM, Leitao E, Popplewell J, Alp B, Vadgama P (2008) Needle enzyme electrode for lactate measurement in vivo. IEEE Sens J 8(1–2):113–120Google Scholar
  147. 147.
    Shimomura T, Sumiya T, Ono M, Itoh T, Hanaoka T (2012) An electrochemical biosensor for the determination of lactic acid in expiration. Procedia Chem 6:46–51Google Scholar
  148. 148.
    Tekus E, Kaj M, Szabo E, Szenasi NL, Kerepesi I, Figler M, Gabriel R, Wilhelm M (2012) Comparison of blood and saliva lactate level after maximum intensity exercise. Acta Biol Hung 63:89–98Google Scholar
  149. 149.
    Thomas N, Lahdesmaki I, Parviz BA (2012) A contact lens with an integrated lactate sensor. Sensor Actuators B Chem 162(1):128–134Google Scholar
  150. 150.
    Liu H, Crooks RM (2011) Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc 133(44):17564–17566Google Scholar
  151. 151.
    Yang YL, Chuang MC, Lou SL, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135(6):1230–1234Google Scholar
  152. 152.
    Yeo WH, Kim YS, Lee J, Ameen A, Shi L, Li M, Wang S, Ma R, Jin SH, Kang Z (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv Mater 25(20):2773–2778Google Scholar
  153. 153.
    Kim DH, Lu NS, Ma R, Kim YS, Kim RH, Wang SD, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu LZ, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang YG, Coleman T, Rogers JA (2011) Epidermal electronics. Science 333(6044):838–843Google Scholar
  154. 154.
    Trzebinski J, Sharma S, Moniz ARB, Michelakis K, Zhang YY, Cass AEG (2012) Microfluidic device to investigate factors affecting performance in biosensors designed for transdermal applications. Lab Chip 12(2):348–352Google Scholar
  155. 155.
    Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81(14):5821–5826Google Scholar
  156. 156.
    Nie ZH, Deiss F, Liu XY, Akbulut O, Whitesides GM (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10(22):3163–3169Google Scholar
  157. 157.
    Yang XX, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12(2):274–280Google Scholar
  158. 158.
    Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv 3(24):9258–9263Google Scholar
  159. 159.
    Labroo P, Cui Y (2013) Electrical, enzymatic graphene biosensing of 5-aminosalicylic acid. Analyst 138(5):1325–1328Google Scholar
  160. 160.
    Labroo P, Cui Y (2012) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856Google Scholar
  161. 161.
    De Rossi D (2007) Electronic textiles: a logical step. Nat Mater 6(5):328–329Google Scholar
  162. 162.
    Yang Y-L, Chuang M-C, Lou S-L, Wang J (2010) Thick-film textile-based amperometric sensors and biosensors. Analyst 135(6):1230–1234Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liza Rassaei
    • 1
  • Wouter Olthuis
    • 2
  • Seiya Tsujimura
    • 3
  • Ernst J. R. Sudhölter
    • 1
  • Albert van den Berg
    • 2
  1. 1.Laboratory of Organic Materials and Interfaces, Department of Chemical EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.MESA + Institute, BIOS/Lab-on-a-Chip groupUniversity of TwenteEnschedeThe Netherlands
  3. 3.Division of Materials Science, Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations