Skip to main content

Current strategies of blood doping detection

Abstract

During the last 30 years, the artificial increase of red blood cell volume (“blood doping”) has changed the level of performance in all endurance sports. Many doping scandals have shown the extent of the problem. The detection of blood doping relies on two different approaches: the direct detection of exogenous manipulating substances (erythropoietic stimulants) or red cells (homologous transfusion) and the indirect detection, where not the doping substance or technique itself, but its effect on certain biomarkers is measured. Whereas direct detection using standard laboratory procedures such as isoelectric focusing can identify erythropoietic stimulants, homologous blood transfusion is identified through mismatches in minor blood group antigens by flow cytometry. Indirect methods such as the athlete biological passport are the only means to detect autologous transfusion and may also be used for the detection of erythropoietic stimulants or homologous transfusion. New techniques to unmask blood doping include the use of high-throughput ‘omics’ technologies (proteomics/metabolomics) and the combination of different biomarkers with the help of mathematical approaches. Future strategies should aim at improving the use of the available data and resources by applying pattern recognition algorithms to recognize suspicious athletes and, on the basis of these findings, use the appropriate testing method. Different types of information should be combined in the quest for a forensic approach to anti-doping.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Sawka MN, Convertino VA, Eichner ER, Schnieder SM, Young AJ (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32:332–348

    CAS  Google Scholar 

  2. 2.

    Bonetti DL, Hopkins WG (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 39:107–127

    Google Scholar 

  3. 3.

    Pace N, Consolazio WV, Lozner EL (1945) The effect of transfusions of red blood cells on the hypoxia tolerance of normal men. Science 102:589–591

    CAS  Google Scholar 

  4. 4.

    Pace N, Lozner EL (1947) The increase in hypoxia tolerance of normal men accompanying the polycythemia induced by transfusion of erythrocytes. Am J Physiol 148:152–163

    CAS  Google Scholar 

  5. 5.

    Gullbring B, Holmgren A, Sjostrand T, Strandell T (1960) The effect of blood volume variations on the pulse rate in supine and upright positions and during exercise. Acta Physiol Scand 50:62–71

    CAS  Google Scholar 

  6. 6.

    Ekblom B, Goldbarg AN, Gullbring B (1972) Response to exercise after blood loss and reinfusion. J Appl Physiol 33:175–180

    CAS  Google Scholar 

  7. 7.

    Robinson BF, Epstein SE, Kahler RL, Braunwald E (1966) Circulatory effects of acute expansion of blood volume: studies during maximal exercise and at rest. Circ Res 19:26–32

    Google Scholar 

  8. 8.

    Sawka MN, Joyner MJ, Miles DS, Robertson RJ, Spriet LL, Young AJ (1996) American College of Sports Medicine position stand. The use of blood doping as an ergogenic aid. Med Sci Sports Exerc 28:i–viii

    CAS  Google Scholar 

  9. 9.

    Cramer RB (1985) Olympic cheating: the inside story of illicit doping and the U.S. cycling team. Rolling Stone 14:25–30

    Google Scholar 

  10. 10.

    Ekblom B, Berglund B (1991) Effect of erythropoietin administration on maximal aerobic power in man. Scand J Med Sci Sport 1:88–93

    Google Scholar 

  11. 11.

    Schumacher YO, Pottgiesser T (2009) Performance profiling: a role for sport science in the fight against doping? Int J Sports Physiol Perform 4:129–133

    Google Scholar 

  12. 12.

    El Helou N, Berthelot G, Thibault V, Tafflet M, Nassif H, Campion F, Hermine O, Toussaint J-F (2010) Tour de France, Giro, Vuelta, and classic European races show a unique progression of road cycling speed in the last 20 years. J Sports Sci 28:789–796

    Google Scholar 

  13. 13.

    Lasne F, de Ceaurriz J (2000) Recombinant erythropoietin in urine. Nature 405:635

    CAS  Google Scholar 

  14. 14.

    Lasne F, Martin L, Crepin N, de Ceaurriz J (2002) Detection of isoelectric profiles of erythropoietin in urine: differentiation of natural and administered recombinant hormones. Anal Biochem 311:119–126

    CAS  Google Scholar 

  15. 15.

    WADA (2013) WADA technical document EPO detection 2013. http://www.wada-ama.org/documents/world_anti-doping_program/wadp-is-laboratories/technical_documents/wada-td2013epo-harmonization-analysis-of-recombinant-erythropoietins-en.pdf. Accessed 23 Apr 2013

  16. 16.

    Bajla I, Holländer I, Minichmayr M, Gmeiner G, Reichel C (2005) GASepo–a software solution for quantitative analysis of digital images in Epo doping control. Comput Methods Prog Biomed 80:246–270

    CAS  Google Scholar 

  17. 17.

    Ashenden M, Gough CE, Garnham A, Gore CJ, Sharpe K (2011) Current markers of the athlete blood passport do not flag microdose EPO doping. Eur J Appl Physiol 111(9):2307–2314

    Google Scholar 

  18. 18.

    Lamon S, Robinson N, Sottas PE, Henry H, Kamber M, Mangin P, Saugy M (2007) Possible origins of undetectable EPO in urine samples. Clin Chim Acta 385:61–66

    CAS  Google Scholar 

  19. 19.

    Lamon S, Martin L, Robinson N, Saugy M, Ceaurriz J, Lasne F (2009) Effects of exercise on the isoelectric patterns of erythropoietin. Clin J Sport Med 19:311

    Google Scholar 

  20. 20.

    Reichel C, Abzieher F, Geisendorfer T (2009) SARCOSYL-PAGE: a new method for the detection of MIRCERA- and EPO-doping in blood. Drug Test Anal 1:494–504

    CAS  Google Scholar 

  21. 21.

    Reichel C, Kulovics R, Jordan V, Watzinger M, Geisendorfer T (2009) SDS-PAGE of recombinant and endogenous erythropoietins: benefits and limitations of the method for application in doping control. Drug Test Anal 1:43–50

    CAS  Google Scholar 

  22. 22.

    Macdougall IC, Ashenden M (2009) Current and upcoming erythropoiesis-stimulating agents, iron products, and other novel anemia medications. Adv Chronic Kidney Dis 16:117–130

    Google Scholar 

  23. 23.

    Möller I, Thomas A, Geyer H, Schänzer W, Thevis M (2011) Synthesis, characterisation, and mass spectrometric detection of a pegylated EPO-mimetic peptide for sports drug testing purposes. Rapid Commun Mass Spectrom 25:2115–2123

    Google Scholar 

  24. 24.

    Chang Y, Maylin GM, Matsumoto G, Neades SM, Catlin DH (2011) Screen and confirmation of PEG-epoetin β in equine plasma. Drug Test Anal 3:68–73

    CAS  Google Scholar 

  25. 25.

    Lönnberg M, Carlsson J (2000) Membrane assisted isoform immunoassay. A rapid method for the separation and determination of protein isoforms in an integrated immunoassay. J Immunol Methods 246:25–36

    Google Scholar 

  26. 26.

    Ashenden M, Sharpe K, Garnham A, Gore CJ (2012) Evaluation of the MAIIA dipstick test to detect recombinant human erythropoietin in plasma. J Pharm Biomed Anal 67–68:123–128

    Google Scholar 

  27. 27.

    Mørkeberg J, Sharpe K, Karstoft K, Ashenden MJ (2013) Detection of microdoses of rhEPO with the MAIIA test. Scand J Med Sci Sports. doi:10.1111/sms.12049

    Google Scholar 

  28. 28.

    Leuenberger N, Saugy J, Mortensen RB, Schatz PJ, Giraud S, Saugy M (2011) Methods for detection and confirmation of Hematide™/peginesatide in anti-doping samples. Forensic Sci Int 213:15–19

    CAS  Google Scholar 

  29. 29.

    Sathyanarayana P, Houde E, Marshall D, Volk A, Makropoulos D, Emerson C, Pradeep A, Bugelski PJ, Wojchowski DM (2009) CNTO 530 functions as a potent EPO mimetic via unique sustained effects on bone marrow proerythroblast pools. Blood 113:4955–4962

    CAS  Google Scholar 

  30. 30.

    Lippin Y, Dranitzki-Elhalel M, Brill-Almon E, Mei-Zahav C, Mizrachi S, Liberman Y, Iaina A, Kaplan E, Podjarny E, Zeira E et al (2005) Human erythropoietin gene therapy for patients with chronic renal failure. Blood 106:2280

    CAS  Google Scholar 

  31. 31.

    Yan L, Colandrea VJ, Hale JJ (2010) Prolyl hydroxylase domain-containing protein inhibitors as stabilizers of hypoxia-inducible factor: small molecule-based therapeutics for anemia. Expert Opin Ther Pat 20:1219–1245

    CAS  Google Scholar 

  32. 32.

    Imagawa S, Matsumoto K, Horie M, Ohkoshi N, Nagasawa T, Doi T, Suzuki N, Yamamoto M (2007) Does K-11706 enhance performance and why? Int J Sports Med 28:928–933

    CAS  Google Scholar 

  33. 33.

    Suzuki N, Ohneda O, Takahashi S, Higuchi M, Mukai HY, Nakahata T, Imagawa S, Yamamoto M (2002) Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood 100:2279–2288

    CAS  Google Scholar 

  34. 34.

    Beuck S, Schänzer W, Thevis M (2012) Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis. Drug Test Anal 4:830–845

    CAS  Google Scholar 

  35. 35.

    Lasne F, Martin L, de Ceaurriz J, Larcher T, Moullier P, Chenuaud P (2004) Genetic doping with erythropoietin cDNA in primate muscle is detectable. Mol Ther 10:409

    CAS  Google Scholar 

  36. 36.

    Riess JG (2001) Oxygen carriers (“blood substitutes”)—raison d’etre, chemistry, and some physiology. Chem Rev 101:2797–2920

    CAS  Google Scholar 

  37. 37.

    Schumacher YO, Schmid A, Dinkelmann S, Berg A, Northoff H (2001) Artificial oxygen carriers–the new doping threat in endurance sport? Int J Sports Med 22:566–571

    CAS  Google Scholar 

  38. 38.

    Schumacher YO, Ashenden M (2004) Doping with artificial oxygen carriers: an update. Sports Med 34:141–150

    Google Scholar 

  39. 39.

    Ashenden MJ, Schumacher YO, Sharpe K, Varlet-Marie E, Audran M (2007) Effects of Hemopure on maximal oxygen uptake and endurance performance in healthy humans. Int J Sports Med 28:381–385

    CAS  Google Scholar 

  40. 40.

    Crago MS, West SD, McKenzie JE (1999) Effects of diaspirin crosslinked hemoglobin infusion in treadmill-exercised swine. Heart Vessels 14:1–8

    CAS  Google Scholar 

  41. 41.

    Hughes GS Jr, Yancey EP, Albrecht R, Locker PK, Francom SF, Orringer EP, Antal EJ, Jacobs EE Jr (1995) Hemoglobin-based oxygen carrier preserves submaximal exercise capacity in humans. Clin Pharmacol Ther 58:434–443

    CAS  Google Scholar 

  42. 42.

    Lasne F, Crepin N, Ashenden M, Audran M, de Ceaurriz J (2004) Detection of hemoglobin-based oxygen carriers in human serum for doping analysis: screening by electrophoresis. Clin Chem 50:410–415

    CAS  Google Scholar 

  43. 43.

    Varlet-Marie E, Ashenden M, Lasne F, Sicart M-T, Marion B, de Ceaurriz J, Audran M (2004) Detection of hemoglobin-based oxygen carriers in human serum for doping analysis: confirmation by size-exclusion HPLC. Clin Chem 50:723–731

    CAS  Google Scholar 

  44. 44.

    Nelson M, Popp H, Sharpe K, Ashenden M (2003) Proof of homologous blood transfusion through quantification of blood group antigens. Haematologica 88:1284–1295

    CAS  Google Scholar 

  45. 45.

    Voss SC, Thevis M, Schinkothe T, Schanzer W (2007) Detection of homologous blood transfusion. Int J Sports Med 28:633–637

    CAS  Google Scholar 

  46. 46.

    Giraud S, Robinson N, Mangin P, Saugy M (2008) Scientific and forensic standards for homologous blood transfusion anti-doping analyses. Forensic Sci Int 179:23–33

    CAS  Google Scholar 

  47. 47.

    WADA (2012) WADA world anti-doping code. Athlete biological passport operating guidelines and compilation of required elements. V3.1, 2012. http://www.wada-ama.org

  48. 48.

    UCI (1997) UCI sporting safety and condition regulations. UCI, Lausanne, Chapt XIII:13.01.023

  49. 49.

    Morkeberg J, Saltin B, Belhage B, Damsgaard R (2009) Blood profiles in elite cross-country skiers: a 6-year follow-up. Scand J Med Sci Sports 19:198–205

    CAS  Google Scholar 

  50. 50.

    FIS Medical Committee (2000) Medical guide 2000/2001. International Ski Federation, Oberhofen am Thunersee, p 13–14

  51. 51.

    Videman T, Lereim I, Hemmingsson P, Turner MS, Rousseau-Bianchi MP, Jenoure P, Raas E, Schönhuber H, Rusko H, Stray-Gundersen J (2000) Changes in hemoglobin values in elite cross-country skiers from 1987-1999. Scand J Med Sci Sports 10:98–102

    CAS  Google Scholar 

  52. 52.

    Cazzola M (2000) A global strategy for prevention and detection of blood doping with erythropoietin and related drugs. Haematologica 85:561–563

    CAS  Google Scholar 

  53. 53.

    Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Ashenden MJ, Gore CJ, Parisotto R, Hahn AG (2002) Development of reference ranges in elite athletes for markers of altered erythropoiesis. Haematologica 87:1248–1257

    Google Scholar 

  54. 54.

    Ashenden MJ, Sharpe K, Schoch C, Schumacher YO (2004) Effect of pre-competition and altitude training on blood models used to detect erythropoietin abuse by athletes. Haematologica 89:1019–1020

    CAS  Google Scholar 

  55. 55.

    Ashenden MJ, Gore CJ, Parisotto R, Sharpe K, Hopkins WG, Hahn AG (2003) Effect of altitude on second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88:1053–1062

    Google Scholar 

  56. 56.

    Felding P, Petersen PH, Hørder M (1981) The stability of blood, plasma and serum constituents during simulated transport. Scand J Clin Lab Invest 41:35–40

    CAS  Google Scholar 

  57. 57.

    Johansson PI, Ullum H, Jensen K, Secher NH (2009) A retrospective cohort study of blood hemoglobin levels in blood donors and competitive rowers. Scand J Med Sci Sports 19:92–95

    CAS  Google Scholar 

  58. 58.

    Audran M, Gareau R, Matecki S, Durand F, Chenard C, Sicart MT, Marion B, Bressolle F (1999) Effects of erythropoietin administration in training athletes and possible indirect detection in doping control. Med Sci Sports Exerc 31:639–645

    CAS  Google Scholar 

  59. 59.

    Parisotto R, Wu M, Ashenden MJ, Emslie KR, Gore CJ, Howe C, Kazlauskas R, Sharpe K, Trout GJ, Xie M (2001) Detection of recombinant human erythropoietin abuse in athletes utilizing markers of altered erythropoiesis. Haematologica 86:128–137

    CAS  Google Scholar 

  60. 60.

    Parisotto R, Gore CJ, Emslie KR, Ashenden MJ, Brugnara C, Howe C, Martin DT, Trout GJ, Hahn AG (2000) A novel method utilising markers of altered erythropoiesis for the detection of recombinant human erythropoietin abuse in athletes. Haematologica 85:564–572

    CAS  Google Scholar 

  61. 61.

    Gore CJ, Parisotto R, Ashenden MJ, Stray-Gundersen J, Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Hahn AG (2003) Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88:333–344

    Google Scholar 

  62. 62.

    Pottgiesser T, Sottas P-E, Echteler T, Robinson N, Umhau M, Schumacher YO (2011) Detection of autologous blood doping with adaptively evaluated biomarkers of doping: a longitudinal blinded study. Transfusion 51:1707–1715

    Google Scholar 

  63. 63.

    Morkeberg J, Sharpe K, Belhage B, Damsgaard R, Schmidt W, Prommer N, Gore CJ, Ashenden MJ (2011) Detecting autologous blood transfusions: a comparison of three passport approaches and four blood markers. Scand J Med Sci Sports 21:235–243

    CAS  Google Scholar 

  64. 64.

    Breidbach A, Catlin DH, Green GA, Tregub I, Truong H, Gorzek J (2003) Detection of recombinant human erythropoietin in urine by isoelectric focusing. Clin Chem 49:901–907

    CAS  Google Scholar 

  65. 65.

    Malcovati L, Pascutto C, Cazzola M (2003) Hematologic passport for athletes competing in endurance sports: a feasibility study. Haematologica 88:570–581

    Google Scholar 

  66. 66.

    Sharpe K, Ashenden MJ, Schumacher YO (2006) A third generation approach to detect erythropoietin abuse in athletes. Haematologica 91:356–63

    CAS  Google Scholar 

  67. 67.

    Sottas PE, Robinson N, Giraud S, Taroni F, Kamber M, Mangin P, Saugy M (2006) Statistical classification of abnormal blood profiles in athletes. International J Biostat 2:1–21

    Google Scholar 

  68. 68.

    Sottas PE, Robinson N, Saugy M (2010) The athlete’s biological passport and indirect markers of blood doping. Handb Exp Pharmacol 305–26

  69. 69.

    Robinson N, Sottas PE, Mangin P, Saugy M (2007) Bayesian detection of abnormal hematological values to introduce a no-start rule for heterogeneous populations of athletes. Haematologica 92:1143–1144

    Google Scholar 

  70. 70.

    Ahlgrim C, Pottgiesser T, Robinson N, Sottas PE, Ruecker G, Schumacher YO (2010) Are 10 min of seating enough to guarantee stable haemoglobin and haematocrit readings for the athlete’s biological passport? Int J Lab Hematol 32:506–511

    CAS  Google Scholar 

  71. 71.

    Robinson N, Sottas PE, Pottgiesser T, Schumacher YO, Saugy M (2011) Stability and robustness of blood variables in an antidoping context. Int J Lab Hematol 33:146–153

    CAS  Google Scholar 

  72. 72.

    WADA (2012) World anti-doping code international standard for laboratories, version 7.0. WADA, Lausanne

    Google Scholar 

  73. 73.

    Lippi G, Banfi G, Maffulli N (2010) Preanalytical variability: the dark side of the moon in blood doping screening. Eur J Appl Physiol 109:1003–1005

    Google Scholar 

  74. 74.

    Banfi G, Lombardi G, Colombini A, Lippi G (2010) A world apart: inaccuracies of laboratory methodologies in antidoping testing. Clin Chim Acta 411:1003–1008

    CAS  Google Scholar 

  75. 75.

    Lombardi G, Lanteri P, Colombini A, Lippi G, Banfi G (2011) Stability of haematological parameters and its relevance on the athlete’s biological passport model. Sports Med 41:1033–1042

    Google Scholar 

  76. 76.

    Robinson N, Mangin P, Saugy M (2004) Time and temperature dependant changes in red blood cell analytes used for testing recombinant erythropoietin abuse in sports. Clin Lab 50:317–323

    CAS  Google Scholar 

  77. 77.

    Voss SC, Flenker U, Majer B, Schänzer W (2008) Stability tests for hematological parameters in antidoping analyses. Lab Hematol 14:24–29

    CAS  Google Scholar 

  78. 78.

    Imeri F, Herklotz R, Risch L, Arbetsleitner C, Zerlauth M, Risch GM, Huber AR (2008) Stability of hematological analytes depends on the hematology analyser used: a stability study with Bayer Advia 120, Beckman Coulter LH 750 and Sysmex XE 2100. Clin Chim Acta 397:68–71

    CAS  Google Scholar 

  79. 79.

    Voss SC, Alsayrafi M, Alsowaidi N, Elzain Elgingo M, Bourdon P, Robinson N, Sottas PE, Klodt F, Nonis D, Schumacher YO (2011) The influence of exercise and circadian rhythm of haemoglobin concentration associated changes in plasma volume on the biological passport. Br J Sports Med 45:A7

    Google Scholar 

  80. 80.

    Schumacher YO, Sahm D, Baumstark MW, Pottgiesser T (2010) Reticulocytes in athletes: longitudinal aspects and the influence of long- and short-term exercise. Drug Test Anal 2:469–474

    CAS  Google Scholar 

  81. 81.

    Schumacher YO, Wenning M, Robinson N, Sottas P-E, Ruecker G, Pottgiesser T (2010) Diurnal and exercise-related variability of haemoglobin and reticulocytes in athletes. Int J Sports Med 31:225–230

    CAS  Google Scholar 

  82. 82.

    Schumacher YO, Pottgiesser T (2011) The impact of acute gastroenteritis on haematological markers used for the athletes biological passport - report of 5 cases. Int J Sports Med 32:147–150

    CAS  Google Scholar 

  83. 83.

    Schumacher YO, Klodt F, Nonis D, Pottgiesser T, Alsayrafi M, Bourdon PC, Voss SC (2012) The impact of long-haul air travel on variables of the athlete’s biological passport. Int J Lab Hematol. doi:10.1111/j.1751-553X.2012.01450.x

    Google Scholar 

  84. 84.

    Sottas P-E, Vernec A (2012) Current implementation and future of the athlete biological passport. Bioanalysis 4:1645–1652

    CAS  Google Scholar 

  85. 85.

    CAS (2010) http://www.tas-cas.org; TAS 2010/A/2235 UCI v. Tadej Valjavec & Olympic Committee of Slovenia

  86. 86.

    CAS (2010) http://www.tas-cas.org: TAS 2010/A/2178 Pietro Caucchioli. CONI & UCI

  87. 87.

    Zorzoli M, Rossi F (2010) Implementation of the biological passport: the experience of the International Cycling Union. Drug Test Anal 2:542–547

    CAS  Google Scholar 

  88. 88.

    Monfort N, Ventura R, Latorre A, Belalcazar V, López M, Segura J (2010) Urinary di-(2-ethylhexyl)phthalate metabolites in athletes as screening measure for illicit blood doping: a comparison study with patients receiving blood transfusion. Transfusion 50:145–149

    CAS  Google Scholar 

  89. 89.

    Monfort N, Ventura R, Platen P, Hinrichs T, Brixius K, Schänzer W, Thevis M, Geyer H, Segura J (2012) Plasticizers excreted in urine: indication of autologous blood transfusion in sports. Transfusion 52:647–657

    CAS  Google Scholar 

  90. 90.

    Solymos E, Guddat S, Geyer H, Thomas A, Thevis M, Schänzer W (2011) Di(2-ethylhexyl) phthalate metabolites as markers for blood transfusion in doping control: intra-individual variability of urinary concentrations. Drug Test Anal 3:892–895

    CAS  Google Scholar 

  91. 91.

    Solymos E, Guddat S, Geyer H, Flenker U, Thomas A, Segura J, Ventura R, Platen P, Schulte-Mattler M, Thevis M, Schänzer W (2011) Rapid determination of urinary di(2-ethylhexyl) phthalate metabolites based on liquid chromatography/tandem mass spectrometry as a marker for blood transfusion in sports drug testing. Anal Bioanal Chem 401:517–528

    CAS  Google Scholar 

  92. 92.

    Monfort N, Ventura R, Balcells G, Segura J (2012) Determination of five di-(2-ethylhexyl)phthalate metabolites in urine by UPLC-MS/MS, markers of blood transfusion misuse in sports. J Chromatogr B Anal Technol Biomed Life Sci 908:113–121

    CAS  Google Scholar 

  93. 93.

    Schmidt W, Prommer N (2005) The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol 95:486–495

    CAS  Google Scholar 

  94. 94.

    Pottgiesser T, Umhau M, Ahlgrim C, Ruthardt S, Roecker K, Schumacher YO (2007) Hb mass measurement suitable to screen for illicit autologous blood transfusions. Med Sci Sports Exerc 39:1748–1756

    Google Scholar 

  95. 95.

    Prommer N, Sottas PE, Schoch C, Schumacher YO, Schmidt W (2008) Total hemoglobin mass–a new parameter to detect blood doping? Med Sci Sports Exerc 40:2112–2118

    CAS  Google Scholar 

  96. 96.

    Pottgiesser T, Specker W, Umhau M, Roecker K, Schumacher YO (2009) Post-transfusion stability of haemoglobin mass. Vox Sang 96:119–127

    CAS  Google Scholar 

  97. 97.

    Pottgiesser T, Specker W, Umhau M, Dickhuth HH, Roecker K, Schumacher YO (2008) Recovery of hemoglobin mass after blood donation. Transfusion 48:1390–1397

    Google Scholar 

  98. 98.

    Eastwood A, Hopkins WG, Bourdon PC, Withers RT, Gore CJ (2008) Stability of hemoglobin mass over 100 days in active men. J Appl Physiol 104:982–985

    Google Scholar 

  99. 99.

    Eastwood A, Sharpe K, Bourdon PC, Woolford SM, Saunders PU, Robertson EY, Clark SA, Gore CJ (2012) Within-subject variation in hemoglobin mass in elite athletes. Med Sci Sports Exerc 44:725–732

    CAS  Google Scholar 

  100. 100.

    Garvican LA, Eastwood A, Martin DT, Ross ML, Gripper A, Gore CJ (2010) Stability of hemoglobin mass during a 6-day UCI ProTour cycling race. Clin J Sport Med 20:200–204

    Google Scholar 

  101. 101.

    Schumacher YO, Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth HH, Roecker K (2008) Haemoglobin mass in cyclists during stage racing. Int J Sports Med 29:372–378

    CAS  Google Scholar 

  102. 102.

    Pottgiesser T, Echteler T, Sottas P-E, Umhau M, Schumacher YO (2012) Hemoglobin mass and biological passport for the detection of autologous blood doping. Med Sci Sports Exerc 44:835–843

    Google Scholar 

  103. 103.

    Lundby C, Robach P (2010) Assessment of total haemoglobin mass: can it detect erythropoietin-induced blood manipulations? Eur J Appl Physiol 108:197–200

    CAS  Google Scholar 

  104. 104.

    Gough CE, Sharpe K, Ashenden MJ, Anson JM, Saunders PU, Garvican LA, Bonetti DL, Gore CJ, Prommer N (2011) Quality control technique to reduce the variability of longitudinal measurement of hemoglobin mass. Scand J Med Sci Sports 21:e365–371

    CAS  Google Scholar 

  105. 105.

    Alexander AC, Garvican LA, Burge CM, Clark SA, Plowman JS, Gore CJ (2011) Standardising analysis of carbon monoxide rebreathing for application in anti-doping. J Sci Med Sport 14:100–105

    Google Scholar 

  106. 106.

    Leuenberger N, Jan N, Pradervand S, Robinson N, Saugy M (2011) Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse. Drug Test Anal 3:771–776

    CAS  Google Scholar 

  107. 107.

    Nikolovski Z, De La Torre C, Chiva C, Borràs E, Andreu D, Ventura R, Segura J (2012) Alterations of the erythrocyte membrane proteome and cytoskeleton network during storage–a possible tool to identify autologous blood transfusion. Drug Test Anal 4:882–890

    CAS  Google Scholar 

  108. 108.

    Marrocco C, Pallotta V, D’alessandro A, Alves G, Zolla L (2012) Red blood cell populations and membrane levels of peroxiredoxin 2 as candidate biomarkers to reveal blood doping. Blood Transfus 10(Suppl 2):s71–77

    Google Scholar 

  109. 109.

    Pottgiesser T, Schumacher YO, Funke H, Rennert K, Baumstark MW, Neunuebel K, Mosig S (2009) Gene expression in the detection of autologous blood transfusion in sports–a pilot study. Vox Sang 96:333–336

    CAS  Google Scholar 

  110. 110.

    Christensen B, Sackmann-Sala L, Cruz-Topete D, Jørgensen JOL, Jessen N, Lundby C, Kopchick JJ (2011) Novel serum biomarkers for erythropoietin use in humans: a proteomic approach. J Appl Physiol 110:149–156

    CAS  Google Scholar 

  111. 111.

    Berglund B, Birgegård G, Wide L, Pihlstedt P (1989) Effects of blood transfusions on some hematological variables in endurance athletes. Med Sci Sports Exerc 21:637–642

    CAS  Google Scholar 

  112. 112.

    Lainé F, Laviolle B, Ropert M, Bouguen G, Morcet J, Hamon C, Massart C, Westermann M, Deugnier Y, Loréal O (2012) Early effects of erythropoietin on serum hepcidin and serum iron bioavailability in healthy volunteers. Eur J Appl Physiol 112:1391–1397

    Google Scholar 

  113. 113.

    Teale P, Barton C, Driver PM, Kay RG (2009) Biomarkers: unrealized potential in sports doping analysis. Bioanalysis 1:1103–1118

    CAS  Google Scholar 

  114. 114.

    Reichel C (2011) OMICS-strategies and methods in the fight against doping. Forensic Sci Int 213:20–34

    CAS  Google Scholar 

Download references

Acknowledgments

The authors declare that they have no conflict of interest relevant to the manuscript submitted. T.P. received a WADA grant for 2012 (11B16TP). Y.O.S. acted as an independent expert for different anti-doping stakeholders in several doping cases.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Torben Pottgiesser.

Additional information

Published in the topical collection Anti-doping Analysis with guest editor Christopher Harrison.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pottgiesser, T., Schumacher, Y.O. Current strategies of blood doping detection. Anal Bioanal Chem 405, 9625–9639 (2013). https://doi.org/10.1007/s00216-013-7270-x

Download citation

Keywords

  • Blood doping
  • Erythropoietin
  • Blood transfusion
  • Athlete biological passport
  • Doping detection