Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 25, pp 8151–8170 | Cite as

Liquid chromatography–mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria

  • Anders H. Honoré
  • Michael Thorsen
  • Thomas Skov
Review

Abstract

Co-cultures of specific lactic and propionic acid bacteria have been shown to have an antagonistic effect against yeast and moulds in dairy systems. In studies of these co-cultures by bioassay-guided fractionation and analysis, numerous compounds have been reported to inhibit yeast and moulds. Although active, the compounds do not account for the full effect observed. Instead, the inhibitory action in the co-culture is believed to be a result of synergy between known exo-metabolites, depletion of nutrients, and/or compounds not yet identified. Untargeted metabolomics or metabolic footprinting could be a potent approach to elucidation of the mechanism. The purpose of this review is to discuss the two pre-requisites for such a study—the compound classes expected in the co-cultures, and on the basis of these, the most suitable analytical technique(s). Ultrahigh-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (MS) via electrospray ionisation (ESI) operated in both positive and negative modes is regarded as the optimum instrumental technique. The applicability of a range of liquid chromatographic techniques ranging from ion-pair (IPC) and hydrophilic interaction (HILIC) to reversed-phase chromatography (RPC) is discussed in terms of the expected metabolome. Use of both HILIC and RPC is suggested, on account of the complementarity of these modes. The most promising strategy uses a combination of the two electrospray polarities and two modes of LC. The strategy recommended in this study does not include all compound classes, and suggestions for supplementary methods are listed.

Keywords

Bacterial co-cultures Exo-metabolome LC–MS Modes of separation 

Abbreviations

ADP

Adenosine diphosphate

ATP

Adenosine triphosphate

APCI

Atmospheric pressure chemical ionisation

CoA

Coenzyme A

ESI

Electrospray ionisation

FT-ICR

Fourier-transform ion cyclotron resonance

FWHM

Full width half maximum

HILIC

Hydrophilic interaction liquid chromatography

HPLC

High-performance liquid chromatography

GC–MS

Gas chromatography–mass spectrometry

IPC

Ion-pairing chromatography

IT

Ion trap

LAB

Lactic acid bacteria

LIT

Linear ion trap

LC–MS

Liquid chromatography–mass spectrometry

m/z

Mass-to-charge ratio

MALDI

Matrix-assisted laser-desorption ionisation

NAD

Nicotinamide adenine dinucleotide

NADH

Reduced nicotinamide adenine dinucleotide

OH-PLA

Hydroxyphenyllactic acid

PAB

Propionic acid bacteria

PFP

Pentafluorophenyl

PLA

Phenyllactic acid

Q

Quadrupole

QTOF

Quadrupole time-of-flight

RPC

Reversed-phase chromatography

Rt

Retention time

TOF

Time-of-flight

UHPLC/UPLC

Ultrahigh/ultra-performance liquid chromatography

ZIC

Zwitterionic

Notes

Acknowledgements

This work was partially financed by The Danish Ministry of Science, Innovation and Higher Education.

References

  1. 1.
    Schwenninger SM, Meile L (2004) A mixed culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei inhibits food spoilage yeasts. Systematic and applied microbiology 27:229–37Google Scholar
  2. 2.
    Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology 16:70–78. doi: 10.1016/j.tifs.2004.02.014 Google Scholar
  3. 3.
    Schwenninger SM, Meile L, Lacroix C (2011) 2 Antifungal lactic acid bacteria and propionibacteria for food biopreservation.pdf. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage Biopreservation. Woodward, pp 27–62Google Scholar
  4. 4.
    Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic Dipeptides Cyclo (L -Phe – L -Pro) and and 3-Phenyllactic Acid. Appl Environ Microbiol 68:4322–4327. doi: 10.1128/AEM.68.9.4322 Google Scholar
  5. 5.
    Lind H, Jonsson H, Schnürer J (2005) Antifungal effect of dairy propionibacteria–contribution of organic acids. International journal of food microbiology 98:157–65. doi: 10.1016/j.ijfoodmicro.2004.05.020 Google Scholar
  6. 6.
    Lind H, Sjögren J, Gohil S et al (2007) Antifungal compounds from cultures of dairy propionibacteria type strains. FEMS microbiology letters 271:310–5. doi: 10.1111/j.1574-6968.2007.00730.x Google Scholar
  7. 7.
    Sjögren J, Magnusson J, Broberg A et al (2003) Antifungal 3-hydroxy fatty acids from lactobacillus plantarum MiLAB 14 antifungal 3-hydroxy fatty acids from lactobacillus plantarum MiLAB 14. Society. doi: 10.1128/AEM.69.12.7554 Google Scholar
  8. 8.
    Schwenninger SM, Lacroix C, Truttmann S et al (2008) Characterization of low-molecular-weight antiyeast metabolites produced by a food-protective Lactobacillus-Propionibacterium coculture. Journal of food protection 71:2481–7Google Scholar
  9. 9.
    Funk W, Damman V, Donnevert G (1995) Quality Assurance in. Anal Chem 1–231Google Scholar
  10. 10.
    Guideline IHT (2005) Validation of analytical procedures. Text and Methodology Q2(R1):1–13Google Scholar
  11. 11.
    Sangster T, Major H, Plumb R et al (2006) A pragmatic and readily implemented quality control strategy for HPLC–MS and GC–MS-based metabonomic analysis. Analyst 131:1075–1078. doi: 10.1039/b604498k Google Scholar
  12. 12.
    Zelena E, Dunn WB, Broadhurst D et al (2009) Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Analytical chemistry 81:1357–64. doi: 10.1021/ac8019366 Google Scholar
  13. 13.
    Want EJ, Wilson ID, Gika H et al (2010) Global metabolic profiling procedures for urine using UPLC–MS. Nature protocols 5:1005–18. doi: 10.1038/nprot.2010.50 Google Scholar
  14. 14.
    Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature protocols 6:1060–83. doi: 10.1038/nprot.2011.335 Google Scholar
  15. 15.
    Madigan MT, Martinko JM, Parker J (2003) Brock Biology of Microorganisms, 10th ed. Prentice HallGoogle Scholar
  16. 16.
    Mashego MR, Rumbold K, De Mey M et al (2007) Microbial metabolomics: past, present and future methodologies. Biotechnology letters 29:1–16. doi: 10.1007/s10529-006-9218-0 Google Scholar
  17. 17.
    Villas-Bôas SG (2007) Sampling and sample preparation. Metabolome analysis - an introduction, 1st edn. Wiley, Hobrooken, pp 39–82Google Scholar
  18. 18.
    Go EP (2010) Database resources in metabolomics: An overview. Journal of neuroimmune pharmacology: The official journal of the Society on NeuroImmune Pharmacology 5:18–30. doi: 10.1007/s11481-009-9157-3 Google Scholar
  19. 19.
    Axelsson L (2004) Lactic Acid Bacteria: Classification and Physiology. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd edn. Marcel Dekker, New York, pp 1–66Google Scholar
  20. 20.
    Renault P, Goupil-feuillerat N, Cocaign-bousquet M et al (1997) Dual role of alpha-acetolactate decarboxylase in Lactococcus lactis subsp. lactis. J Bacteriol 179:6285–6293Google Scholar
  21. 21.
    Boumerdassi H, Desmazeaud M, Monnet C et al (1996) Improvement of Diacetyl Production by Lactococcus lactis ssp. lactis CNRZ 483 Through Oxygen Control. Journal of Dairy Science 79:775–781. doi: 10.3168/jds.S0022-0302(96)76425-1 Google Scholar
  22. 22.
    Talarico TL, Casas IA, Chung TC, Dobrogosz WJ (1988) Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial agents and chemotherapy 32:1854–8Google Scholar
  23. 23.
    Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76:217–46Google Scholar
  24. 24.
    Liu M, Nauta A, Francke C, Siezen RJ (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Applied and environmental microbiology 74:4590–600. doi: 10.1128/AEM.00150-08 Google Scholar
  25. 25.
    Valerio F, Lavermicocca P, Pascale M, Visconti A (2004) Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS microbiology letters 233:289–95. doi: 10.1016/j.femsle.2004.02.020 Google Scholar
  26. 26.
    Broberg A, Jacobsson K, Ström K, Schnürer J (2007) Metabolite profiles of lactic acid bacteria in grass silage. Applied and environmental microbiology 73:5547–52. doi: 10.1128/AEM.02939-06 Google Scholar
  27. 27.
    Fernández M, Zúñiga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183Google Scholar
  28. 28.
    Ryan LAM, Dal Bello F, Arendt EK, Koehler P (2009) Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. Journal of agricultural and food chemistry 57:9563–8. doi: 10.1021/jf902033v Google Scholar
  29. 29.
    Ouwehand A (2004) Antimicrobial Components from Lactic Acid Bacteria. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd edn. Marcel Dekker, New York, pp 375–396Google Scholar
  30. 30.
    Nes IF, Kjos M, Diep DB (2011) Antimicrobial Components of Lactic Acid Bacteria. In: Lahtinen S, von Wright A (eds) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th edn. CRC Press, London, pp 285–329Google Scholar
  31. 31.
    Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS microbiology reviews 7:113–30Google Scholar
  32. 32.
    Thierry A, Deutsch S-M, Falentin H et al (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. International journal of food microbiology 149:19–27. doi: 10.1016/j.ijfoodmicro.2011.04.026 Google Scholar
  33. 33.
    Thierry A, Maillard M, Richoux R et al (2005) Original article Propionibacterium freudenreichii strains quantitatively affect production of volatile compounds in Swiss Cheese. Lait 85:57–74. doi: 10.1051/lait Google Scholar
  34. 34.
    Preinerstorfer B, Schiesel S, Lämmerhofer M, Lindner W (2010) Metabolic profiling of intracellular metabolites in fermentation broths from beta-lactam antibiotics production by liquid chromatography-tandem mass spectrometry methods. Journal of chromatography A 1217:312–28. doi: 10.1016/j.chroma.2009.11.051 Google Scholar
  35. 35.
    Van der Werf MJ, Overkamp KM, Muilwijk B et al (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Analytical biochemistry 370:17–25. doi: 10.1016/j.ab.2007.07.022 Google Scholar
  36. 36.
    Bajad SU, Lu W, Kimball EH et al (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of chromatography A 1125:76–88. doi: 10.1016/j.chroma.2006.05.019 Google Scholar
  37. 37.
    Buescher JM, Moco S, Sauer U, Zamboni N (2010) Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Analytical chemistry 82:4403–12. doi: 10.1021/ac100101d Google Scholar
  38. 38.
    Büscher JM, Czernik D, Ewald JC et al (2009) Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical chemistry 81:2135–43. doi: 10.1021/ac8022857 Google Scholar
  39. 39.
    Skov T, Honoré AH, Jensen HM, Engelsen SB Chemometrics goes Foodomics - what’s in the blocks! TrAC Trends in Analytical Chemistry Submitted.Google Scholar
  40. 40.
    Swartz ME (2005) UPLC TM : An Introduction and Review. Journal of Liquid Chromatography & Related Technologies 28:1253–1263. doi: 10.1081/JLC-200053046 Google Scholar
  41. 41.
    Sumner LW (2006) I. 2 Current Status and Forward Looking Thoughts on LC/MS Metabolomics. In: Saito K, Dixon RA, Willmitzer L (eds) Plant Metabolomics. Springer Verlag, Berlin, pp 21–32Google Scholar
  42. 42.
    Wilson ID, Nicholson JK, Castro-perez J et al (2005) High Resolution “ Ultra Performance ” Liquid Chromatography Coupled to oa-TOF Mass Spectrometry as a Tool for Differential Metabolic Pathway Profiling in Functional Genomic Studies research articles. Journal of Proteome Research 591–598Google Scholar
  43. 43.
    Nordström A, O’Maille G, Qin C, Siuzdak G (2006) Nonlinear data alignment for UPLC–MS and HPLC–MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Analytical chemistry 78:3289–95. doi: 10.1021/ac060245f Google Scholar
  44. 44.
    Want EJ, Masson P, Michopoulos F et al (2013) Global metabolic profiling of animal and human tissues via UPLC–MS. Nature protocols 8:17–32. doi: 10.1038/nprot.2012.135 Google Scholar
  45. 45.
    Theodoridis G (2011) Mass spectrometry based holistic analytical approaches for metabolite profiling in systems biology studies. Mass spectrometry reviews 30:884–906. doi: 10.1002/mas Google Scholar
  46. 46.
    Meyer MR, Maurer HH (2012) Current applications of high-resolution mass spectrometry in drug metabolism studies. Analytical and bioanalytical chemistry 1221–1231. doi: 10.1007/s00216-012-5807-zGoogle Scholar
  47. 47.
    Liang Y, Wang G, Xie L, Sheng L (2011) Recent development in liquid chromatography/mass spectrometry and emerging technologies for metabolite identification. Current Drug Metabolism 12:329–344. doi: 10.2174/138920011795202910 Google Scholar
  48. 48.
    Marshall AG, Hendrickson CL, Shi SD-H (2002) Scaling MS Plateaus with High-Resolution FTICR MS. Anal Chem 74:252A–259AGoogle Scholar
  49. 49.
    De Hoffmann E (2007) Mass Spectrometry (chapter 2). Mass Spectrometry, 3rd edn. Wiley, Chichester, pp 85–173Google Scholar
  50. 50.
    Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC bioinformatics 7:234. doi: 10.1186/1471-2105-7-234 Google Scholar
  51. 51.
    Laures AM, Wolff J, Eckers C, et al. (2007) Investigation into the factors affecting accuracy of mass measurements on a time-of-flight mass spectrometer using Design of Experiment. 11:529–535. doi:  10.1002/rcm
  52. 52.
    Spagou K, Wilson ID, Masson P et al (2011) HILIC-UPLC–MS for exploratory urinary metabolic profiling in toxicological studies. Analytical chemistry 83:382–90. doi: 10.1021/ac102523q Google Scholar
  53. 53.
    Want EJ, Maille GO, Smith CA, et al. (2006) Clustering, and Protein Extraction for Serum Profiling with Mass Spectrometry. 78:743–752Google Scholar
  54. 54.
    Bristow T, Constantine J, Harrison M, Cavoit F (2008) Performance optimisation of a new-generation orthogonal-acceleration quadrupole-time-of-flight mass spectrometer. Rapid Communications in Mass Spectrometry 1213–1222. doi: 10.1002/rcmGoogle Scholar
  55. 55.
    De Hoffmann E, Stroobant V (2007) Mass Spectrometry (chapter 6). Mass Spectrometry, 3rd edn. Wiley, Chichester, pp 243–271Google Scholar
  56. 56.
    Makarov A, Denisov E, Kholomeev A et al (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Analytical chemistry 78:2113–20. doi: 10.1021/ac0518811 Google Scholar
  57. 57.
    Makarov A, Denisov E, Lange O, Horning S (2006) Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer. Journal of the American Society for Mass Spectrometry 17:977–82. doi: 10.1016/j.jasms.2006.03.006 Google Scholar
  58. 58.
    Olsen JV, de Godoy LMF, Li G et al (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & cellular proteomics : MCP 4:2010–21. doi: 10.1074/mcp.T500030-MCP200 Google Scholar
  59. 59.
    Erve JCL, Gu M, Wang Y et al (2009) Spectral accuracy of molecular ions in an LTQ/Orbitrap mass spectrometer and implications for elemental composition determination. Journal of the American Society for Mass Spectrometry 20:2058–69. doi: 10.1016/j.jasms.2009.07.014 Google Scholar
  60. 60.
    Xu Y, Heilier J-F, Madalinski G et al (2010) Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-orbitrap mass spectrometer for further metabolomics database building. Analytical chemistry 82:5490–501. doi: 10.1021/ac100271j Google Scholar
  61. 61.
    Pelander A, Decker P, Baessmann C, Ojanperä I (2011) Evaluation of a high resolving power time-of-flight mass spectrometer for drug analysis in terms of resolving power and acquisition rate. Journal of the American Society for Mass Spectrometry 22:379–85. doi: 10.1007/s13361-010-0046-z Google Scholar
  62. 62.
    Dunn WB, Broadhurst D, Brown M et al (2008) Metabolic profiling of serum using Ultra Performance Liquid Chromatography and the LTQ-Orbitrap mass spectrometry system. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 871:288–98. doi: 10.1016/j.jchromb.2008.03.021 Google Scholar
  63. 63.
    Kamleh A, Barrett M, Wildridge D (2008) profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: A method with wide applicability to analysis of biomolecules. Mass Spectrometry 1912–1918. doi: 10.1002/rcm
  64. 64.
    Spagou K, Tsoukali H, Raikos N et al (2010) Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. Journal of separation science 33:716–27. doi: 10.1002/jssc.200900803 Google Scholar
  65. 65.
    Want EJ, Coen M, Masson P et al (2010) Ultra performance liquid chromatography-mass spectrometry profiling of bile acid metabolites in biofluids: application to experimental toxicology studies. Analytical chemistry 82:5282–9. doi: 10.1021/ac1007078 Google Scholar
  66. 66.
    Rojas-Cherto M, Peironcely J (2012) Metabolite identification using automated comparison of high-resolution multistage mass spectral trees. Analytical chemistry 84:5524Google Scholar
  67. 67.
    Halket JM, Waterman D, Przyborowska AM et al (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC–MS and LC–MS/MS. Journal of experimental botany 56:219–43. doi: 10.1093/jxb/eri069 Google Scholar
  68. 68.
    Covey TR, Schneider BB, Jahaveri H et al (2010) ESI, APCI, and MALDI - A comparison of the Central Figures of Merit: Sensitivity, Reproducibility, and Speed. In: Cole RB (ed) Electrospray and Maldi Mass Spectrometry: Fundamentals, Instrumentation, and Biological Applications, 2nd edn. Wiley, Hoboken, pp 443–490Google Scholar
  69. 69.
    Tolstikov VV, Lommen A, Nakanishi K et al (2003) Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics. Analytical chemistry 75:6737–40. doi: 10.1021/ac034716z Google Scholar
  70. 70.
    Idborg H, Zamani L, Edlund P-O et al (2005) Metabolic fingerprinting of rat urine by LC–MS Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 828:9–13. doi: 10.1016/j.jchromb.2005.07.031 Google Scholar
  71. 71.
    Aharoni A, Ric de Vos CH, Verhoeven HA et al (2002) Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics : a journal of integrative biology 6:217–34. doi: 10.1089/15362310260256882 Google Scholar
  72. 72.
    Waybright TJ, Van QN, Muschik GM et al (2006) LC–MS in Metabonomics: Optimization of Experimental Conditions for the Analysis of Metabolites in Human Urine. Journal of Liquid Chromatography & Related Technologies 29:2475–2497Google Scholar
  73. 73.
    Nordström A, Want E, Northen T et al (2008) Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Analytical chemistry 80:421–9. doi: 10.1021/ac701982e Google Scholar
  74. 74.
    Sana TR, Waddell K, Fischer SM (2008) A sample extraction and chromatographic strategy for increasing LC–MS detection coverage of the erythrocyte metabolome. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 871:314–21. doi: 10.1016/j.jchromb.2008.04.030 Google Scholar
  75. 75.
    Nordström A (2007) Data mining for metabolomics. In: Griffiths WJ (ed) Metabolomics, Metabonomics and Metabolite Profiling, 1st ed. RSC Publishing, pp 273–294Google Scholar
  76. 76.
    Edwards JL, Edwards RL, Reid KR, Kennedy RT (2007) Effect of decreasing column inner diameter and use of off-line two-dimensional chromatography on metabolite detection in complex mixtures. Journal of chromatography A 1172:127–34. doi: 10.1016/j.chroma.2007.09.075 Google Scholar
  77. 77.
    Sulek K, Frandsen HL, Smedsgaard J et al (2011) Metabolic footprint of Lactobacillus acidophilus NCFM at different pH. Metabolomics 8:244–252. doi: 10.1007/s11306-011-0305-4 Google Scholar
  78. 78.
    Destefano JJ, Langlois TJ, Kirkland JJ (2008) Characteristics of superficially-porous silica particles for fast HPLC: some performance comparisons with sub-2-microm particles. Journal of chromatographic science 46:254–60Google Scholar
  79. 79.
    Baran R, Bowen BP, Bouskill NJ et al (2010) Metabolite Identification in Synechococcus sp. PCC 7002 Using Untargeted Stable Isotope Assisted Metabolite Profiling. Analytical chemistry 82:9034–9042. doi: 10.1021/ac1020112 Google Scholar
  80. 80.
    Baran R, Bowen BP, Northen TR (2011) Untargeted metabolic footprinting reveals a suprising breadth of metabolite uptake and release by Synechoccocus sp. PCC7002. Mol Biosyst 7:3200–3206Google Scholar
  81. 81.
    Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. Journal of the American Society for Mass Spectrometry 17:37–50. doi: 10.1016/j.jasms.2005.09.001 Google Scholar
  82. 82.
    Luo B, Groenke K, Takors R et al (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. Journal of chromatography A 1147:153–64. doi: 10.1016/j.chroma.2007.02.034 Google Scholar
  83. 83.
    Lu W, Clasquin MF, Melamud E et al (2010) Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Analytical chemistry 82:3212–21. doi: 10.1021/ac902837x Google Scholar
  84. 84.
    Kiefer P, Portais J-C, Vorholt J (2008) Quantitative metabolome analysis using liquid chromatography-high-resolution mass spectrometry. Analytical biochemistry 382:94–100. doi: 10.1016/j.ab.2008.07.010 Google Scholar
  85. 85.
    Yang S, Sadilek M, Lidstrom ME (2010) Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global (13)C-labeled internal standards improve performance for quantitative metabolomics in bacteria. Journal of chromatography A 1217:7401–10. doi: 10.1016/j.chroma.2010.09.055 Google Scholar
  86. 86.
    Snyder LR, Kirkland JJ, Dolan JW (2010) Ionic samples: Reversed-phase, ion-pair, and ion-exchange chromatography. Indtoduction to modern liquid chromatography, 3RD ed. John Wiley & Sons, inc., pp 303–360Google Scholar
  87. 87.
    Coulier L, Bas R, Jespersen S et al (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Analytical chemistry 78:6573–82. doi: 10.1021/ac0607616 Google Scholar
  88. 88.
    Yanes O, Tautenhahn R, Patti GJ, Siuzdak G (2011) Expanding coverage of the metabolome for global metabolite profiling. Analytical chemistry 83:2152–61. doi: 10.1021/ac102981k Google Scholar
  89. 89.
    Snyder LR, Kirkland JJ, Dolan JW (2010) Normal-phase chromatography. Introduction to modern liquid chromatography, 3rd ed. John Wiley & Sons, inc., pp 361–402Google Scholar
  90. 90.
    Alpert JA (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196Google Scholar
  91. 91.
    Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Analytical biochemistry 301:298–307. doi: 10.1006/abio.2001.5513 Google Scholar
  92. 92.
    Guo Y, Gaiki S (2005) Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography. Journal of Chromatography A 1074:71–80. doi: 10.1016/j.chroma.2005.03.058 Google Scholar
  93. 93.
    Ikegami T, Tomomatsu K, Takubo H et al (2008) Separation efficiencies in hydrophilic interaction chromatography. Journal of chromatography A 1184:474–503. doi: 10.1016/j.chroma.2008.01.075 Google Scholar
  94. 94.
    Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)–a powerful separation technique. Analytical and bioanalytical chemistry 402:231–47. doi: 10.1007/s00216-011-5308-5 Google Scholar
  95. 95.
    Cubbon S, Antonio C, Wilson J, Thomas-oates J (2010) METABOLOMIC APPLICATIONS OF HILIC – LC – MS. Mass Spectrometry Reviews 671–684. doi: 10.1002/masGoogle Scholar
  96. 96.
    Kawachi Y, Ikegami T, Takubo H et al (2011) Chromatographic characterization of hydrophilic interaction liquid chromatography stationary phases: hydrophilicity, charge effects, structural selectivity, and separation efficiency. Journal of chromatography A 1218:5903–19. doi: 10.1016/j.chroma.2011.06.048 Google Scholar
  97. 97.
    Snyder LR, Kirkland JJ, Dolan JW (2010) The column. Introduction to modern liquid chromatography, Third Edition, 3rd ed. John Wiley & Sons, inc., pp 199–252Google Scholar
  98. 98.
    Fairchild JN, Horvath K, Gooding JR et al (2010) Two-dimensional liquid chromatography/mass spectrometry/mass spectrometry separation of water-soluble metabolites. Journal of chromatography A 1217:8161–6. doi: 10.1016/j.chroma.2010.10.068 Google Scholar
  99. 99.
    Schiesel S, Lämmerhofer M, Lindner W (2010) Multitarget quantitative metabolic profiling of hydrophilic metabolites in fermentation broths of β-lactam antibiotics production by HILIC-ESI-MS/MS. Analytical and bioanalytical chemistry 396:1655–79. doi: 10.1007/s00216-009-3432-2 Google Scholar
  100. 100.
    Snyder LR, Kirkland JJ, Dolan JW (2010) Reversed-phase chromatography for neutral samples. Introduction to modern liquid chromatography, 3rd ed. John Wiley & Sons, inc., pp 253–301Google Scholar
  101. 101.
    Patti GJ (2011) Separation strategies for untargeted metabolomics. Journal of separation science 34:3460–9. doi: 10.1002/jssc.201100532 Google Scholar
  102. 102.
    Phelan VV, Liu W-T, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange–the chemotype-to-phenotype link. Nature chemical biology 8:26–35. doi: 10.1038/nchembio.739 Google Scholar
  103. 103.
    Yoshida H, Mizukoshi T, Hirayama K, Miyano H (2007) Comprehensive analytical method for the determination of hydrophilic metabolites by high-performance liquid chromatography and mass spectrometry. Journal of agricultural and food chemistry 55:551–60. doi: 10.1021/jf061955p Google Scholar
  104. 104.
    Narainsamy K, Cassier-Chauvat C, Junot C, Chauvat F (2011) High performance analysis of the cyanobacterial metabolism via liquid chromatography coupled to a LTQ-Orbitrap mass spectrometer: evidence that glucose reprograms the whole carbon metabolism and triggers oxidative stress. Metabolomics. doi: 10.1007/s11306-011-0382-4 Google Scholar
  105. 105.
    Evans AM, DeHaven CD, Barrett T et al (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical chemistry 81:6656–67. doi: 10.1021/ac901536h Google Scholar
  106. 106.
    Ryan LM, Zannini E, Dal Bello F et al (2011) Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. International journal of food microbiology 146:276–83. doi: 10.1016/j.ijfoodmicro.2011.02.036 Google Scholar
  107. 107.
    Gilar M, Daly AE, Kele M et al (2004) Implications of column peak capacity on the separation of complex peptide mixtures in single- and two-dimensional high-performance liquid chromatography. Journal of Chromatography A 1061:183–192. doi: 10.1016/j.chroma.2004.10.092 Google Scholar
  108. 108.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Analytical chemistry 77:6426–34. doi: 10.1021/ac050923i Google Scholar
  109. 109.
    Guo K, Peng J, Zhou R, Li L (2011) Ion-pairing reversed-phase liquid chromatography fractionation in combination with isotope labeling reversed-phase liquid chromatography-mass spectrometry for comprehensive metabolome profiling. Journal of chromatography A 1218:3689–94. doi: 10.1016/j.chroma.2011.04.024 Google Scholar
  110. 110.
    Liebeke M, Dörries K, Meyer H, Lalk M (2012) Metabolome analysis of gram-positive staphylococcus aureus by GC–MS and LC–MS. In: Kaufmann M, Klinger C (eds) Functional genomics: Methods and protocols, methods in melcular biology. Springer, pp 377–398Google Scholar
  111. 111.
    Smilde AK, van der Werf MJ, Bijlsma S et al (2005) Fusion of mass spectrometry-based metabolomics data. Analytical chemistry 77:6729–36. doi: 10.1021/ac051080y Google Scholar
  112. 112.
    Westerhuis JA, Kourti T, MacGregor JF (1998) Analysis of multiblock and hierarchical PCA and PLS models. J Chemom 12:301–321. doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S Google Scholar
  113. 113.
    Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. Journal of chromatography A 1158:318–28. doi: 10.1016/j.chroma.2007.04.021 Google Scholar
  114. 114.
    Castillo S, Gopalacharyulu P, Yetukuri L, Orešič M (2011) Algorithms and tools for the preprocessing of LC–MS metabolomics data. Chemom Intell Lab Syst 108:23–32. doi: 10.1016/j.chemolab.2011.03.010 Google Scholar
  115. 115.
    Hassani S, Martens H, Qannari EM et al (2010) Analysis of -omics data: Graphical interpretation- and validation tools in multi-block methods. Chemom Intell Lab Syst 104:140–153. doi: 10.1016/j.chemolab.2010.08.008 Google Scholar
  116. 116.
    Jankevics A, Merlo ME, de Vries M et al (2012) Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets. Metabolomics : Official journal of the Metabolomic Society 8:29–36. doi: 10.1007/s11306-011-0341-0 Google Scholar
  117. 117.
    Kind T, Fiehn O (2010) Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical reviews 2:23–60. doi: 10.1007/s12566-010-0015-9 Google Scholar
  118. 118.
    Smart KF, Aggio RBM, Van Houtte JR, Villas-Bôas SG (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nat Protoc 5:1709–1729Google Scholar
  119. 119.
    De Vos RCH, Moco S, Lommen A et al (2007) Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature protocols 2:778–91. doi: 10.1038/nprot.2007.95 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anders H. Honoré
    • 1
    • 2
  • Michael Thorsen
    • 1
  • Thomas Skov
    • 2
  1. 1.DuPont Nutrition Biosciences Aps, Advanced AnalysisBrabrandDenmark
  2. 2.Department of Food Science, Quality and TechnologyUniversity of Copenhagen, Faculty of ScienceFrederiksberg CDenmark

Personalised recommendations