Skip to main content
Log in

Novel moving reaction boundary-induced stacking and separation of human hemoglobins in slab polyacrylamide gel electrophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We developed a novel polyacrylamide gel electrophoresis (PAGE) method to stack and separate human hemoglobins (Hbs) based on the concept of moving reaction boundary (MRB). This differs from the classic isotachophoresis (ITP)-based stacking PAGE in the aspect of buffer composition, including the electrode buffer (pH 8.62 Tris–Gly), sample buffer (pH 6.78 Tris–Gly), and separation buffer (pH 8.52 Tris–Gly). In the MRB-PAGE system, a transient MRB was formed between alkaline electrode buffer and acidic sample buffer, being designed to move toward the anode. Hbs carried partial positive charges in the sample buffer due to its pH below pI values of Hbs, resulting in electromigrating to the cathode. Hbs would carry negative charges quickly when migrated into the alkaline electrode buffer and be transported to the anode until meeting the sample buffer again. Thus, Hbs were stacked within a MRB until the transient MRB reached the separation buffer and then separated by zone electrophoresis with molecular sieve effect of the gel. The experimental results demonstrated that there were three clear and sharp protein zones of Hbs (HbA1c, HbA0, and HbA2) in MRB-PAGE, in contrast to only one protein zone (HbA0) in ITP-PAGE for large-volume loading (≥15 μl), indicating high stacking efficiency, separation resolution, and good sensitivity of MRB-PAGE. In addition, MRB-PAGE was performed in a conventional slab PAGE device, requiring no special device. Thus, it could be widely used in separation and analysis of diluted protein in a standard laboratory.

Diagram of MRB-induced stacking in a slab PAGE. (A) arrangement of separation buffer (pH 8.01–9.55 Tris–Gly), sample buffer (pH 6.37–7.22 Tris–Gly), and electrode buffer (pH 8.21–9.05 Tris–Gly); (B) initial MRB formed between electrode and sample buffers for stacking of low-content Hbs in sample buffer under electric field; (C) MRB moving toward the anode and partly stacking of Hbs within the MRB; (D) quasi-complete stacking of Hbs via MRB closing to the separating gel; (E) separation of Hbs in a zone electrophoresis mode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

CHCA:

α-Cyano-4-hydroxycinnamic acid

Hbs:

Hemoglobins

IEF:

Isoelectric focusing

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry

MRB:

Moving reaction boundary

PAGE:

Polyacrylamide gel electrophoresis

TEMED:

N, N, N′, N-Tetramethylethylenediamine

References

  1. Raymond S, Weintraub L (1959) Science 130:711

    Article  CAS  Google Scholar 

  2. Blas ZS, Matioli CA (1961) Medicina 21:121–129

    Google Scholar 

  3. Blas ZS, Matioli CA (1961) Medicina 21:130–134

    Google Scholar 

  4. Reysfeld RA, Lewis UJ, Williams DE (1962) Nature 195:281–283

    Article  Google Scholar 

  5. Osuna MB, Casamayor EO (2011) Curr Microbiol 62:111–116

    Article  CAS  Google Scholar 

  6. Coelho MB, Macedo MLR, Marangoni S, Silva DS, Cesarino I, Mazzafera P (2010) J Agric Food Chem 58:3050–3055

    Article  Google Scholar 

  7. He Y, Ye T, Su M, Zhang C, Ribbe AE, Jiang W, Mao C (2008) Nature 452:198–201

    Article  CAS  Google Scholar 

  8. Sultana R, Newman SF, Huang Q, Butterfield DA (2009) Methods Mol Biol 476:149–159

    Article  Google Scholar 

  9. Ferrero S, Gillott DJ, Remorgida V, Anserini P, Leung KY, Ragni N, Grudzinskas JG (2007) J Proteome Res 6:3402–3411

    Article  CAS  Google Scholar 

  10. Murray S, McKenzie M, Butler R, Baldwin S, Sutton K, Batey I, Timmerman-Vaughan GM (2011) Anal Biochem 413:104–113

    Article  CAS  Google Scholar 

  11. Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, Mathies RA (2010) Anal Chem 82:10102–10109

    Article  CAS  Google Scholar 

  12. Ornstein L (1964) Ann NY Acad Sci 121:321–349

    Article  CAS  Google Scholar 

  13. Davis BJ (1964) Ann NY Acad Sci 121:404–427

    Article  CAS  Google Scholar 

  14. Zhang T, Gai Q, Qu F, Zhang Y (2011) Electrophoresis 32:2904–2910

    Article  CAS  Google Scholar 

  15. Herr AE, Throckmorton DJ, Davenport AA, Singh AK (2005) Anal Chem 77:585–590

    Article  CAS  Google Scholar 

  16. Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Anal Chem 78:4976–4984

    Article  CAS  Google Scholar 

  17. Khurana TK, Santiago JG (2008) Anal Chem 80:279–286

    Article  CAS  Google Scholar 

  18. Persat A, Chivukula RR, Mendell JT, Santiago JG (2010) Anal Chem 82:9631–9635

    Article  CAS  Google Scholar 

  19. Persat A, Santiago JG (2011) Anal Chem 83:2310–2316

    Article  CAS  Google Scholar 

  20. Chen YL, Lu WJ, Chen XG, Teng M (2012) Cent Eur J Chem 10:611–638

    Article  Google Scholar 

  21. Dodd DW, Hudson RHE (2007) Electrophoresis 28:3884–3889

    Article  CAS  Google Scholar 

  22. Zheng CY, Ma G, Su Z (2007) Electrophoresis 28:2801–2807

    Article  CAS  Google Scholar 

  23. Deman J, Rigole W (1970) J Phys Chem 74:1122–1126

    Article  CAS  Google Scholar 

  24. Deman J (1970) Anal Chem 42:321–324

    Article  CAS  Google Scholar 

  25. Cao CX, He YZ, Li M, Qian YT, Gao MF, Ge LH, Zhou SL, Yang L, Qu QS (2002) Anal Chem 74:4167–4174

    Article  CAS  Google Scholar 

  26. Cao CX, Zhang W, Qin WH, Li S, Zhu W, Liu W (2005) Anal Chem 77:955–963

    Article  CAS  Google Scholar 

  27. Cao CX, Fan LY, Zhang W (2008) Analyst 133:1139–1157

    Article  CAS  Google Scholar 

  28. Zhan XQ, Guan YJ, Li C, Chen Z, Xie J, Chen P, Liang S (2002) Acta Biochim Biophys Sin 34:50–56

    CAS  Google Scholar 

  29. Xu F, Sun S, Liu X (2006) Acta Chim Sin 64:543–550

    CAS  Google Scholar 

  30. Mario N, Baudin B, Aussel C, Giboudeau J (1997) Clin Chem 43:2137–2142

    CAS  Google Scholar 

  31. Chandalia H, Krishnaswamy P (2002) Curr Sci 83:1522–1532

    CAS  Google Scholar 

  32. Hempe J, Craver R (1994) Clin Chem 40:2288–2295

    CAS  Google Scholar 

Download references

Acknowledgments

The project was supplied by the NSFC (no. 21035004, 21275099), National Key Development of Scientific Instrument (no. 2011YQ030139), Key Scientific Project of Shanghai Jiao Tong University (no. YG2010ZD209), and the Instrumental Analysis Center of SJTU and the University.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-Zhi Fan or Cheng-Xi Cao.

Additional information

Yun-Yun Tang, Hou-Yu Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.50 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, YY., Wang, HY., Chen, L. et al. Novel moving reaction boundary-induced stacking and separation of human hemoglobins in slab polyacrylamide gel electrophoresis. Anal Bioanal Chem 405, 8587–8595 (2013). https://doi.org/10.1007/s00216-013-7258-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7258-6

Keywords

Navigation