In-line sequential injection-based hollow-fiber sorptive microextraction as a front-end to gas chromatography–mass spectrometry: a novel fully automatic sample processing technique for residue analysis

Abstract

A novel and affordable analytical setup is herein reported for automatic flow-through sorptive microextraction of organic contaminants, exploiting polydimethylsiloxane (PDMS) as a front-end to gas chromatography-ion trap-tandem mass spectrometry. The analytical procedure involves a short single-strand PDMS hollow fiber integrated in a sequential injection (SI) network for automatic fluidic handling by programmable flow. The target species are in-line extracted from 10 mL of sample containing 20 % (v/v) methanol followed by elution with a metered volume of organic solvent, which is whereupon quantitatively transferred into the programmed temperature vaporization (PTV) injector of the GC. Diffusional resistance to mass transfer was overcome by effecting the overall concentration and stripping steps at a single PDMS tubing interface. The proof of concept of the novel hyphenated system was demonstrated for extraction and determination of organochlorine pesticides (OCPs), namely, heptachlor, dieldrin, endrin, endosulfan, p,p′-dichlorodiphenyldichloroethane, p,p′-dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, and endrin ketone, taken as model analytes, in environmental and industrial waters. Four organic solvents with a broad spectrum of polarity were investigated as eluents in the SI-based assembly, namely, ethyl acetate, methyl tert-butyl ether, hexane, and chloroform. Chloroform was proven the most suitable solvent for expedient elution and fast evaporation in the PTV injector. Under the selected experimental variables, limits of detection (signal-to-noise ratio (S/N) = 3) within the range of 0.3–1.1 ng L−1, limits of quantification (S/N = 10) of 1.0–3.6 ng L−1, and method repeatabilities spanning from 1.7 to 4.7 % were obtained for the suite of OCPs. The hyphenated flow analyzer was harnessed to the analysis of samples of varying matrix complexity with good relative recoveries (86–112 %) in drinking water, surface water, and influent and effluent wastewaters, with quantification limits far below those endorsed by WHO and EU drinking water directives setting maximum allowed concentrations at ≤100 ng L−1 OCPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Mitra S (ed) (2003) Sample preparation techniques in analytical chemistry. Wiley, Hoboken, NJ

    Google Scholar 

  2. 2.

    Pawliszyn J (ed) (2012) Comprehensive sampling and sample preparation. Analytical techniques for scientists. Elsevier, Amsterdam

    Google Scholar 

  3. 3.

    Pawliszyn J, Lord HL (eds) (2010) Handbook of sample preparation. Wiley, New York

    Google Scholar 

  4. 4.

    Pedersen-Bjergaard S, Rasmussen KE (2008) J Chromatogr A 1184:132–142

    Article  CAS  Google Scholar 

  5. 5.

    Pena-Pereira F, Lavilla I, Bendicho C (2010) Trends Anal Chem 29:617–628

    Article  CAS  Google Scholar 

  6. 6.

    Abdel-Rehim M (2011) Anal Chim Acta 701:119–128

    Article  CAS  Google Scholar 

  7. 7.

    Miró M, Hartwell SK, Jakmunee J, Grudpan K, Hansen EH (2008) Trends Anal Chem 27:749–761

    Article  Google Scholar 

  8. 8.

    Pawliszyn J (ed) (2012) Handbook of solid-phase microextraction. Elsevier, Amsterdam

    Google Scholar 

  9. 9.

    Baltussen E, Sandra P, David F, Cramers C (1999) J Microcolumn Sep 11:737–747

    Article  CAS  Google Scholar 

  10. 10.

    Lancas FM, Queiroz MEC, Grossi P, Olivares IRB (2009) J Sep Sci 32:813–824

    Article  CAS  Google Scholar 

  11. 11.

    Prieto A, Basauri O, Rodil R, Usobiaga A, Fernandez LA, Etxebarria N, Zuloaga O (2010) J Chromatogr A 1217:2642–2666

    Article  CAS  Google Scholar 

  12. 12.

    Popp P, Bauer C, Hauser B, Keil P, Wennrich L (2003) J Sep Sci 26:961–967

    Article  CAS  Google Scholar 

  13. 13.

    Montero L, Popp P, Paschke A, Pawliszyn J (2004) J Chromatogr A 1025:17–26

    Article  CAS  Google Scholar 

  14. 14.

    van Pinxteren M, Paschke A, Popp P (2010) J Chromatogr A 1217:2589–2598

    Article  Google Scholar 

  15. 15.

    Kataoka H, Ishizaki A, Nonaka Y, Saito K (2009) Anal Chim Acta 655:8–29

    Article  CAS  Google Scholar 

  16. 16.

    Kataoka H (2002) Anal Bioanal Chem 373:31–45

    Article  CAS  Google Scholar 

  17. 17.

    Cháfer-Pericás C, Herráez-Hernández R, Campíns-Falcó P (2006) J Chromatogr A 1125:159–171

    Article  Google Scholar 

  18. 18.

    Cháfer-Pericás C, Campíns-Falcó P, Prieto-Blanco MC (2008) J Chromatogr A 610:268–273

    Google Scholar 

  19. 19.

    Miró M, Hansen EH (2006) Trends Anal Chem 25:267–281

    Article  Google Scholar 

  20. 20.

    Hansen EH, Miró M (2007) Trends Anal Chem 26:18–26

    Article  CAS  Google Scholar 

  21. 21.

    Pinto PCAG, Lucia M, Saraiva MFS, Lima JLFC (2011) Anal Lett 44:374–397

    Article  CAS  Google Scholar 

  22. 22.

    Economou A (2005) Trends Anal Chem 24:416–425

    Article  CAS  Google Scholar 

  23. 23.

    Lenehan CE, Barnett NW, Lewis SW (2002) Analyst 127:997–1020

    Article  CAS  Google Scholar 

  24. 24.

    Quintana JB, Miró M, Estela JM, Cerdà V (2006) Anal Chem 78:2832–2840

    Article  CAS  Google Scholar 

  25. 25.

    Quintana JB, Boonjob W, Miró M, Cerdà V (2009) Anal Chem 81:4822–4830

    Article  CAS  Google Scholar 

  26. 26.

    Wurl O, Obbard JP (2005) Atmos Environ 39:7207–7216

    Article  CAS  Google Scholar 

  27. 27.

    Korenkova E, Matisova E, Slobodnik J (2003) J Sep Sci 26:1193–1197

    Article  CAS  Google Scholar 

  28. 28.

    Concha-Graña E, Turnes-Carou MI, Muniategui-Lorenzo S, Lopez-Mahía P, Fernández-Fernández E, Prada-Rodríguez D (2001) Chromatographia 54:501–506

    Article  Google Scholar 

  29. 29.

    Magdic S, Pawliszyn JB (1996) J Chromatogr A 723:111–122

    Article  CAS  Google Scholar 

  30. 30.

    COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption (1998). Official J. Eur. Communities L 330/32-54

    Google Scholar 

  31. 31.

    Guidelines for Drinking Water Quality (2008). World Health Organization, Geneva

  32. 32.

    Batlle R, Sánchez C, Nerín C (1999) Anal Chem 71:2417–2422

    Article  CAS  Google Scholar 

  33. 33.

    Valls-Cantenys C, Villaverde-de-Sáa E, Rodil R, Quintana JB, Iglesias M, Salvadó V, Cela R (2013) Anal Chim Acta 770:85–93

    Article  CAS  Google Scholar 

  34. 34.

    Montes R, Rodríguez I, Rubí E, Cela R (2007) J Chromatogr A 1143:41–47

    Article  CAS  Google Scholar 

  35. 35.

    Sgorbini B, Budziak D, Cordero C, Liberto E, Rubiolo P, Sandra P, Bicchi C (2010) J Sep Sci 33:2191–2199

    Article  CAS  Google Scholar 

  36. 36.

    Schellin M, Popp P (2007) J Chromatogr A 1152:175–183

    Article  CAS  Google Scholar 

  37. 37.

    Lee JN, Park C, Whitesides GM (2003) Anal Chem 75:6544–6554

    Article  CAS  Google Scholar 

  38. 38.

    Oh HK, Song KH, Lee KR, Rim LM (2001) Polymer 42:6305–6312

    Article  CAS  Google Scholar 

  39. 39.

    Olejniczak J, Staniewski J (2007) Anal Chim Acta 588:64–72

    Article  CAS  Google Scholar 

  40. 40.

    Seethapathy S, Gorecki T (2012) Anal Chim Acta 750:48–62

    Article  CAS  Google Scholar 

  41. 41.

    Fang ZL (1993) Flow-injection separation and preconcentration. WCH-Verlag, Weinheim

    Google Scholar 

  42. 42.

    Barri T, Bergström S, Hussen A, Norberg J, Jonsson JA (2006) J Chromatogr A 1111:11–20

    Article  CAS  Google Scholar 

  43. 43.

    Basheer C, Lee HK, Obbard JP (2002) J Chromatogr A 968:191–199

    Article  CAS  Google Scholar 

  44. 44.

    Bedendo GC, Carasek E (2010) J Chromatogr A 1217:7–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Warunya Boonjob is grateful to Conselleria d’Educació, Cultura i Universitats, Direcció General d’Universitats, Recerca i Transferència del Coneixement from the Government of the Balearic Islands for allocation of a Ph.D. stipend and travel grant for a 3-month research stay at the University of Santiago de Compostela. She also acknowledges financial support from the European Social Fund and the state budget of the Czech Republic (Project no. CZ.1.07/2.3.00/30.0061). This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through projects CTM2010-17214 and CTQ2010-18927, and the Ramón y Cajal research program. Additional funding was provided by the Galician Government (Xunta de Galicia) through project 10MDS700006PR. The authors thank Dr. V. Cerda for the loan of analytical instrumentation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to José Benito Quintana or Manuel Miró.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 125 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boonjob, W., Quintana, J.B., Rodil, R. et al. In-line sequential injection-based hollow-fiber sorptive microextraction as a front-end to gas chromatography–mass spectrometry: a novel fully automatic sample processing technique for residue analysis. Anal Bioanal Chem 405, 8653–8662 (2013). https://doi.org/10.1007/s00216-013-7253-y

Download citation

Keywords

  • Sequential injection analysis
  • Polydimethylsiloxane
  • In-line microextraction
  • Gas chromatography–mass spectrometry
  • Organochlorine pesticides