Peptide structural analysis using continuous Ar cluster and C60 ion beams

Abstract

A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn1 Val5]-angiotensin II and [Val5]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 +, are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Urquhart AJ, Taylor M, Anderson DG, Langer R, Davies MC, Alexander MR (2008) Analytical Chemistry 80:135–142

    Article  CAS  Google Scholar 

  2. 2.

    Leufgen K, Mutter M, Vogel H, Szymczak W (2003) Journal of the American Chemical Society 125:8911–8915

    Article  CAS  Google Scholar 

  3. 3.

    Robinson MA, Graham DJ, Castner DG (2012) Analytical Chemistry 84:4880–4885

    Article  CAS  Google Scholar 

  4. 4.

    Kotze HL, Armitage EG, Fletcher JS, Henderson A, Williams KJ, Lockyer NP, Vickerman JC (2013) Surface and Interface Analysis 45:277–281

    Article  CAS  Google Scholar 

  5. 5.

    Lanekoff I, Phan NTN, Van Bell CT, Winograd N, Sjövall P, Ewing AG (2013) Surface and Interface Analysis 45:211–214

    Article  CAS  Google Scholar 

  6. 6.

    Klerk LA, Dankers PYW, Popa ER, Bosman AW, Sanders ME, Reedquist KA, Heeren RMA (2010) Analytical Chemistry 82:4337–4343

    Article  CAS  Google Scholar 

  7. 7.

    Benninghoven A, Sichtermann W (1977) Organic Mass Spectrometry 12:595–597

    Article  CAS  Google Scholar 

  8. 8.

    Benninghoven A (1994) Surface Science 299:246–260

    Article  Google Scholar 

  9. 9.

    Castner DG, Ratner BD (2002) Surface Science 500:28–60

    Article  CAS  Google Scholar 

  10. 10.

    Wagner MS, Castner DG (2001) Langmuir 17:4649–4660

    Article  CAS  Google Scholar 

  11. 11.

    Mantus DS, Ratner BD, Carlson BA, Moulder JF (1993) Analytical Chemistry 65:1431–1438

    Article  CAS  Google Scholar 

  12. 12.

    Lhoest JB, Detrait E, van den Bosch de Aguilar P, Bertrand P (1998) Journal of Biomedical Materials Research 41:95–103

    Article  CAS  Google Scholar 

  13. 13.

    Tidwell CD, Castner DG, Golledge SL, Ratner BD, Meyer K, Hagenhoff B, Benninghoven A (2001) Surface and Interface Analysis 31:724–733

    Article  CAS  Google Scholar 

  14. 14.

    Canavan HE, Graham DJ, Cheng XH, Ratner BD, Castner DG (2007) Langmuir 23:50–56

    Article  CAS  Google Scholar 

  15. 15.

    Delcorte A, Medard N, Bertrand P (2002) Analytical Chemistry 74:4955–4968

    Article  CAS  Google Scholar 

  16. 16.

    Gnaser H, Ichiki K, Matsuo J (2012) Rapid Communications in Mass Spectrometry 26:1–8

    Article  CAS  Google Scholar 

  17. 17.

    Mochiji K, Hashinokuchi M, Moritani K, Toyoda N (2009) Rapid Communications in Mass Spectrometry 23:648–652

    Article  CAS  Google Scholar 

  18. 18.

    Rabbani S, Barber AM, Fletcher JS, Lockyer NP, Vickerman JC (2011) Analytical Chemistry 83:3793–3800

    Article  CAS  Google Scholar 

  19. 19.

    Fletcher JS, Lockyer NP, Vickerman JC (2011) Mass Spectrometry Reviews 30:142–174

    Article  CAS  Google Scholar 

  20. 20.

    Aoyagi S, Mihara I, Kudo M (2013) Surface and Interface Analysis 45:190–193

    Article  CAS  Google Scholar 

  21. 21.

    Wagner MS, Castner DG (2003) Applied Surface Science 203:698–703

    Article  Google Scholar 

  22. 22.

    Lee, MSE (2012) Mass Spectrometry Handbook; Wiley

  23. 23.

    Papayannopoulos IA (1995) Mass Spectrometry Reviews 14:49–73

    Article  CAS  Google Scholar 

  24. 24.

    Vaisar T, Urban JJ (1996) Mass Spectrom 31:1185–1187

    Article  CAS  Google Scholar 

  25. 25.

    Nold MJ, Wesdemiotis C, Yalcin T, Harrison AG (1997) Int J Mass Spectrom Ion Processes 164:137

    Article  CAS  Google Scholar 

  26. 26.

    Fletcher JS (2009) Analyst 134:2204–2215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Messrs Rowland Hill and Retsu Oiwa for their useful support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satoka Aoyagi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aoyagi, S., Fletcher, J.S., Sheraz (Rabbani), S. et al. Peptide structural analysis using continuous Ar cluster and C60 ion beams. Anal Bioanal Chem 405, 6621–6628 (2013). https://doi.org/10.1007/s00216-013-7139-z

Download citation

Keywords

  • Continuous Ar cluster beam
  • ToF-SIMS
  • Peptide structure
  • (des-Tyr)-enkephalin
  • Angiotensin