Skip to main content

Advertisement

Log in

Detection and elimination profile of cathinone in equine after norephedrine (Propalin®) administration using a validated liquid chromatography–tandem mass spectrometry method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cathinone is the principal psychostimulant present in the leaves of khat shrub, which are widely used in East Africa and the Arab peninsula as an amphetamine-like stimulant. Cathinone readily undergoes metabolism in vivo to form less potent cathine and norephedrine as the metabolites. However, the presence of cathine and norephedrine in biological fluids cannot be used as an indicator of cathinone administration. The metabolism of pseudoephedrine and ephedrine, commonly used in cold and allergy medications, also produces cathine and norephedrine, respectively, as the metabolites. Besides, cathine and norephedrine may also originate from the ingestion of nutritional supplemental products containing extracts of Ephedra species. In Canada, ephedrine and norephedrine are available for veterinary use, whereas cathinone is not approved for human or veterinary use. In this article, the detection of cathinone in equine after administration of norephedrine is reported. To the best of our knowledge, this is the first such report in any species where administration of norephedrine or ephedrine generates cathinone as the metabolite. This observation is quite significant, because in equine detection of cathinone in biological fluids could be due to administration of the potent stimulant cathinone or the nonpotent stimulant norephedrine. A single oral dose of 450 mg norephedrine was administered to four Standardbred mares. Plasma and urine samples were collected up to 120 h after administration. The amount of cathinone and norephedrine detected in post administration samples was quantified using a highly sensitive, specific, and validated liquid chromatography–tandem mass spectrometry method. Using these results, we constructed elimination profiles for cathinone and norephedrine in equine plasma and urine. A mechanism that generates a geminal diol as an intermediate is postulated for this in vivo conversion of norephedrine to cathinone. Cathinone was also detected in samples collected after a single intramuscular administration of 200 mg ephedrine and oral administration of 300 mg ephedrine in equine.

Electron density structure of cathinone

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toennes SW, Kauert GF (2002) Excretion and detection of cathinone, cathine and phenylpropanolamine in urine after kath chewing. Clin Chem 28:1715–1719

    Google Scholar 

  2. Toennes SW, Harder S, Schramm M, Niess C, Kauert GF (2003) Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br J Clin Pharmacol 56:125–130

    Article  CAS  Google Scholar 

  3. Sporkert F, Pragst F, Bachus R, Masuhr F, Harms L (2003) Determination of cathinone, cathine and norephedrine in hair of Yemenite khat chewers. Forensic Sci Int 113:39–46

    Article  Google Scholar 

  4. Toennes SW, Kauert GF (2003) Driving under the influence of khat – alkaloid concentrations and observations in forensic cases. Forensic Sci Int 140:85–90

    Article  Google Scholar 

  5. Brenneisen R, Fisch HU, Koelbing U, Geisshusler S, Kalix P (1990) Amphetamine-like effects in humans of the Khat alkaloids cathinone. Br J Clin Pharmacol 30:825–828

    Article  CAS  Google Scholar 

  6. Paul BD, Cole KA (2001) Cathinone (khat) and methcathinone (cat) in urine specimens: a gas chromatographic-mass spectrometric detection procedure. J Anal Toxicol 25:525–530

    Article  CAS  Google Scholar 

  7. Mathys K, Brenneisen R (1992) Determination of (S)-(-)-cathinone and its metabolites (R, S)-(-)-norephedrine and (R, R)-(-) norpseudoephedrine in urine by high performance liquid chromatography with photodiode-array detection. J Chromatogr A 593:79–85

    Article  CAS  Google Scholar 

  8. Gambaro V, Arnoldi S, Colombo ML, Dell’Acqua L, Guerrini K, Roda G (2012) Determination of active principles of Catha edulis: quali-quantitative analysis of cathinone, cathine, and phenylpropanolamine. Forensic Sci Int 217:87–92

    Article  CAS  Google Scholar 

  9. Chappell JS, Lee MM (2010) Cathinone preservation in khat evidence via drying. Forensic Sci Int 195:108–120

    Article  CAS  Google Scholar 

  10. Berrang BD, Lewin AH, Carroll FI (1982) Enantiomeric α-aminopropiophenones (cathinone): preparation and investigation. J Org Chem 47:2643–2647

    Article  CAS  Google Scholar 

  11. Lee MM (1995) The identification of cathinone in khat (Catha edulis): a time study. J Forensic Sci 40:116–121

    CAS  Google Scholar 

  12. Brenneisen R, Geisshusler S (1985) Psychotropic drugs III: analytical and chemical aspects of Catha edulis Forsk. Pharm Acta Helv 60:290–301

    CAS  Google Scholar 

  13. LeBelle MJ, Lauriault G, Lavoie A (1993) Gas chromatographic-mass spectrometric identification of chiral derivatives of the alkaloids of khat. Forensic Sci Int 61:53–64

    Article  CAS  Google Scholar 

  14. Dawson BA, Black DB, Lavoie A, LeBelle MJ (1994) Nuclear magnetic resonance identification of the phenylalkylamine alkaloids in khat using a chiral solvating agent. J Forensic Sci 39:1026–1038

    CAS  Google Scholar 

  15. Al-Meshal IA, Al-Rashood KA, Nasir M, El-Feraly F (1987) (-)-Cathinone: Improved synthesis and carbon-13 NMR assignments. J Nat Prod 50:1138–1140

    Article  CAS  Google Scholar 

  16. Sørenson LK (2011) Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography-electrospray tandem mass spectrometry. J Chromatogr B 879:727–736

    Article  Google Scholar 

  17. Deventer K, Van Eenoo P, Baele G, Pozo OJ, Van Thuyne W, Delbeke FT (2009) Interpretation of urinary concentrations of pseudoephedrine and its metabolite cathine in relation to doping control. Drug Test Anal 1:209–213

    Article  CAS  Google Scholar 

  18. Tseng YL, Shieh MH, Kuo FH (2006) Metabolites of ephedrines in human urine after administration of a single therapeutic dose. Forensic Sci Int 157:149–155

    Article  CAS  Google Scholar 

  19. Abourashed EA, El-Alfy AT, Khan IA, Walker L (2003) Review article: Ephedra in perspective – a current review. Phytother Res 17:703–712

    Article  CAS  Google Scholar 

  20. Krizevski R, Bar E, Shalit O, Sitrit Y, Ben-Shabat S, Lewinsohn E (2010) Composition and stereochemistry of ephedrine alkaloids accumulation in Ephedra sinica Stapf. Phytochemistry 71:895–903

    Article  CAS  Google Scholar 

  21. Chan KH, Pan RN, Hsu MC, Hsu KF (2008) Urinary elimination of ephedrines following administration of the traditional Chinese medicine preparation kakkon-to. J Anal Toxicol 32:763–767

    Article  CAS  Google Scholar 

  22. Jiménez C, de la Torre R, Ventura M, Segura J, Ventura R (2006) Stability studies of amphetamine and ephedrine derivatives in urine. J Chromatogr B 843:84–93

    Article  Google Scholar 

  23. North American Compendiums (2012) Antihistamine powder. http://veto.naccvp.com/index.php?m=product_view&id=1234007&key=label. Accessed 12 Oct 2012

  24. Schneider M, Woehrl F, Boisram B (2012) Enantioselective pharmacokinetics of phenylpropanolamine in dogs. http://www.vetoquinol.com/pdf/propalin/enantioselective_pharmacokinetics_of_phenylpropanolamine.pdf. Accessed 1 Nov2012

  25. Powers ME (2001) Ephedra and its application to sport performance: another concern for the athletic trainer. J Athl Train 36:420–424

    CAS  Google Scholar 

  26. Magkos F, Kavouras SA (2004) Caffeine and ephedrine: physiological, metabolic and performance enhancing effects. Sports Med 34:871–889

    Article  Google Scholar 

  27. Hodges K, Hancock S, Currell K, Hamilton B, Jeukendrup AE (2006) Pseudoephedrine enhances performance in 1500-m runners. Med Sci Sport Exer 38:329–333

    Article  Google Scholar 

  28. Pokrywka A, Tszyrsznic W, Kwiatkowska DJ (2009) Problems of the use of pseudoephedrine by athletes. Int J Sports Med 30:569–572

    Article  CAS  Google Scholar 

  29. Barroso O, Goudreault D, Carbó Banús ML, Ayotte C, Mazzoni I, Boghosian T, Rabin O (2012) Determination of urinary concentrations of pseudoephedrine and cathine after therapeutic administration of pseudoephedrine-containing medications to healthy subjects: implications for doping control analysis of these stimulants banned in sport. Drug Test Anal 4:320–329

    Article  CAS  Google Scholar 

  30. Strano-Rossi S, Leone D, de la Torre X, Botrè F (2009) The relevance of the urinary concentration of ephedrines in anti-doping analyses: determination of pseudoephedrine, cathine and ephedrine after administration of over-the-counter medicaments. Ther Drug Monit 31:520–526

    Article  CAS  Google Scholar 

  31. World Anti-Doping Agency (2012) The world anti-doping code. http://www.wada-ama.org/documents/world_anti-doping_program/wadp-prohibited-list/2012/wada_prohibited_list_2012_en.pdf. Accessed 12 Jan 2013

  32. Association of Racing Commissioners International (2012) Uniform classification guidelines for foreign substances and recommended penalties and model rule. http://arci.com/druglisting.pdf. Accessed 12 Jan 2013

  33. Sever PS, Dring LG, Williams RT (1975) The metabolism of (-)-ephedrine in man. Europ J Clin Pharmacol 9:193–198

    Article  CAS  Google Scholar 

  34. Feller DR, Malspeis L (1977) Biotransformation of D(-)-ephedrine and L(+)-ephedrine in the rabbit, in vivo and in vitro. Drug Metab Dispos 5:37–46

    CAS  Google Scholar 

  35. Chester N, Mottram DR, Reilly T, Powell M (2003) Elimination of ephedrines in urine following multiple dosing: the consequences for athletes, in relation to doping control. Br J Clin Pharmacol 57:62–67

    Article  Google Scholar 

  36. Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165:216–224

    Article  CAS  Google Scholar 

  37. Association of Official Racing Chemists (2011) AORC guidelines for the minimum criteria for identification by chromatography and mass spectrometry. http://www.aorc-online.org/documents/aorc-ms-criteria-may-2011. Accessed 27 Apr 2013

  38. May SW, Phillips RS, Mueller PW, Herman HH (1981) Dopamine β-hydroxylase: demonstration of enzymatic ketonization of the product enantiomer, S-octopamine. J Biol Chem 256:2258–2261

    CAS  Google Scholar 

  39. May SW, Phillips RS, Herman HH, Mueller PW (1982) Bioactivation of Catha edulis alkaloids: enzymatic ketonization of norpseudoephedrine. Biochem Biophys Res Commun 104:38–44

    Article  CAS  Google Scholar 

  40. Widler P, Mathys K, Brenneisen R, Kalix P, Fisch H-U (1994) Pharmacodynamics and pharmacokinetics of khat: a controlled study. Clin Pharmcacol Ther 55(5):556–562

    Article  CAS  Google Scholar 

  41. Brenneisen R, Geisshuesler S, Schorno X (1986) Metabolism of cathinone to (-)-norephedrine and (-) norpseudoephedrine. J Pharm Pharmacol 38(4):298–300

    Article  CAS  Google Scholar 

  42. Guantai AN, Maitai CK (1983) Metabolism of cathinone to d-norpseudoephedrine in humans. J Pharm Sci 72(10):1217–1218

    Article  CAS  Google Scholar 

  43. Springer D, Fritschi G, Maurer HH (2003) Metabolism of the new designer drug α-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4’-methyl-α-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B 796(2):253–266

    Article  CAS  Google Scholar 

  44. Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM (2011) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 120(S1):S49–S75

    Article  CAS  Google Scholar 

  45. Trunzer M, Faller B, Zimmerlin A (2009) Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC-MS/MS validation. J Med Chem 52:329–335

    Article  CAS  Google Scholar 

  46. Lin JH, Lu AYH (1997) Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 49:403–449

    CAS  Google Scholar 

  47. Chen ZR, Somogyi AA, Reynolds G, Bochner F (1991) Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol 31:381–390

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Canadian Pari-Mutuel Agency, a division of Agriculture and Agri-Food Canada, as part of its Equine Drug Evaluation Research Program. Drug administration and sample collection were performed by Adam Chambers and the staff of the Equine Drug Evaluation Centre in Jerseyville, Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devan Loganathan.

Additional information

Published in the topical collection Anti-doping Analysis with guest editor Christopher Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, R., Zhao, S., Lam, G. et al. Detection and elimination profile of cathinone in equine after norephedrine (Propalin®) administration using a validated liquid chromatography–tandem mass spectrometry method. Anal Bioanal Chem 405, 9711–9722 (2013). https://doi.org/10.1007/s00216-013-7073-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7073-0

Keywords

Navigation