Skip to main content
Log in

Intracellular SERS hybrid probes using BSA–reporter conjugates

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) hybrid probes are characterized by the typical spectrum of a reporter molecule. In addition, they deliver information from their biological environment. Here, we report SERS hybrid probes generated by conjugating different reporter molecules to bovine serum albumin (BSA) and using gold nanoparticles as plasmonic core. Advantages of the BSA-conjugate hybrid nanoprobes over other SERS nanoprobes are a high biocompatibility, stabilization of the gold nanoparticles in the biological environment, stable reporter signals, and easy preparation. The coupling efficiencies of the BSA–reporter conjugates were determined by MALDI-TOF-MS. The conjugates’ characteristic SERS spectra differ from the spectra of unbound reporter molecules. This is a consequence of the covalent coupling, which leads to altered SERS enhancement and changes in the chemical structures of the reporter and of BSA. The application of the BSA–reporter conjugate hybrid probes in 3T3 cells, including duplex imaging, is demonstrated. Hierarchical cluster analysis and principal components analysis were applied for multivariate imaging using the SERS signatures of the incorporated SERS hybrid nanoprobes along with the spectral information from biomolecules in endosomal structures of cells. The results suggest more successful applications of the SERS hybrid probes in cellular imaging and other unordered high-density bioanalytical sensing.

Single pixel spectrum obtained with SERS hybrid nanoprobes (here: BSA-AO conjugate on gold nanoparticles) inside living 3T3 cells. The distribution of SERS hybrid nanoprobes in 3T3 fibroblast cells can be obtained from chemical mapping, and from hierarchical cluster analysis (HCA) mapping employing the full spectral range from 300–1700 cm-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  2. Otto A (ed) (1984) ‘Classical’ and ‘Chemical’ origins. Light scattering in solids IV, Electronic Scattering, Spin Effects, SERS and Morphic Effects. Springer, Berlin

    Google Scholar 

  3. Persson BNJ (1981) On the theory of surface-enhanced Raman scattering. Chem Phys Lett 82(3):561–565

    Article  CAS  Google Scholar 

  4. Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Article  CAS  Google Scholar 

  5. Joseph V, Engelbrekt C, Zhang J, Gernert U, Ulstrup J, Kneipp J (2012) Charakterisierung Nanopartikel-katalysierter Reaktionen durch oberflächenverstärkte Raman-Streuung. Angew Chem 124(30):7712–7716

    Article  Google Scholar 

  6. Gühlke M, Selve S, Kneipp J (2012) Magnetic separation and SERS observation of analyte molecules on bifunctional silver/iron oxide composite nanostructures. J Raman Spectrosc 43(9):1204–1207

    Google Scholar 

  7. Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385

    Article  CAS  Google Scholar 

  8. Matschulat A, Drescher D, Kneipp J (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269

    Article  CAS  Google Scholar 

  9. Wang Y, Seebald JL, Szeto DP, Irudayaraj J (2010) Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4(7):4039–4053

    Article  CAS  Google Scholar 

  10. Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP (2010) Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal Chem 82(20):8382–8385

    Article  CAS  Google Scholar 

  11. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Letters 6(10):2225–2231

    Article  CAS  Google Scholar 

  12. Kneipp J, Harald K, Anpuchchelvi R, Robert WR, Katrin K (2009) Optical probing and imaging of live cells using SERS labels. 40(1):1–5

  13. Joseph V, Matschulat A, Polte J, Rolf S, Emmerling F, Kneipp J (2011) SERS enhancement of gold nanospheres of defined size. J Raman Spectrosc 42(9):1736–1742

    Article  CAS  Google Scholar 

  14. Drescher D, Kneipp J (2012) Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 41(17):5780–5799

    Article  CAS  Google Scholar 

  15. Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Singh Kamboj S, Singh Bakshi M (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J Phys Chem C 116(15):8834–8843

    Article  CAS  Google Scholar 

  16. Naczynski DJ, Andelman T, Pal D, Chen S, Riman RE, Roth CM, Moghe PV (2010) Albumin nanoshell encapsulation of near-infrared-excitable rare-earth nanoparticles enhances biocompatibility and enables targeted cell imaging. Small 6(15):1631–1640

    Article  CAS  Google Scholar 

  17. Yonzon CR, Haynes CL, Zhang X, Walsh JT, Van Duyne RP (2003) A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal Chem 76(1):78–85

    Article  Google Scholar 

  18. Lakowicz J, Geddes C, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441

    Article  CAS  Google Scholar 

  19. Dominguez-Medina S, McDonough S, Swanglap P, Landes CF, Link S (2012) In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28(24):9131–9139

    Article  CAS  Google Scholar 

  20. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632

    Article  CAS  Google Scholar 

  21. Osawa M, Matsuda N, Yoshii K, Uchida I (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg–Teller contribution. J Phys Chem 98(48):12702–12707

    Article  CAS  Google Scholar 

  22. Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185(1):131–135

    Article  CAS  Google Scholar 

  23. Hungerford G, Benesch J, Mano JF, Reis RL (2007) Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem Photobiol Sci 6(2):152–158

    Article  CAS  Google Scholar 

  24. Bose D, Sarkar D, Chattopadhyay N (2010) Probing the binding interaction of a phenazinium dye with serum transport proteins: a combined fluorometric and circular dichroism study. Photochem Photobiol 86(3):538–544

    Article  CAS  Google Scholar 

  25. Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum-albumin by ESIMS and FRIT-FAB LC MS. Biochem Biophys Res Commun 173(2):639–646

    Article  CAS  Google Scholar 

  26. Muccio Z, Jackson GP (2009) Isotope ratio mass spectrometry. Analyst 134:213–222

    Article  CAS  Google Scholar 

  27. Ciric-Marjanovic G, Blinova NV, Trchova M, Stejskal J (2007) Chemical oxidative polymerization of safranines. J Phys Chem B 111(9):2188–2199

    Article  CAS  Google Scholar 

  28. Wengatz I, Schmid RD, Kreissig S, Wittmann C, Hock B, Ingendoh A, Hillenkamp F (1992) Determination of the hapten density of immuno-conjugates by matrix-assisted UV laser desorption/ionization mass spectrometry. Anal Lett 25(11):1983–1997

    Article  CAS  Google Scholar 

  29. Zimmermann F, Hossenfelder B, Panitz JC, Wokaun A (1994) SERRS study of acridine orange and its binding to DNA strands. J Phys Chem 98(48):12796–12804

    Article  Google Scholar 

  30. Ni F, Feng H, Gorton L, Cotton TM (1990) Electrochemical and SERS studies of chemically modified electrodes—Nile Blue-A, a mediator for NADH oxidation. Langmuir 6(1):66–73

    Article  CAS  Google Scholar 

  31. Bloomfield V (1966) The structure of bovine serum albumin at low pH. Biochemistry 5(2):684–689

    Article  CAS  Google Scholar 

  32. Majoube M, Henry M (1991) Fourier-transform Raman and infrared and surface-enhanced Raman-spectra for rhodamine-6g. Spectrochim Acta A Mol Biomol Spectrosc 47(9–10):1459–1466

    Google Scholar 

  33. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver. J Phys Chem 88(24):5935–5944

    Article  CAS  Google Scholar 

  34. Hildebrandt P, Stockburger M (1986) Surface enhanced resonance Raman-study on fluorescein dyes. J Raman Spectrosc 17(1):55–58

    Article  CAS  Google Scholar 

  35. Feldherr CM, Kallenbach E, Schultz N (1984) Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol 99(6):2216–2222

    Article  CAS  Google Scholar 

  36. Bright NA, Reaves BJ, Mullock BM, Luzio JP (1997) Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17):2027–2040

    CAS  Google Scholar 

  37. Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C 114(16):7421–7426

    Article  CAS  Google Scholar 

  38. Podstawka E, Ozaki Y, Proniewicz LM (2004) Adsorption of SS containing proteins on a colloidal silver surface studied by surface-enhanced Raman spectroscopy. Appl Spectrosc 58(10):1147–1156

    Article  CAS  Google Scholar 

  39. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395

    Article  CAS  Google Scholar 

  40. Rinderknecht H (1962) Ultra-rapid fluorescent labelling of proteins. Nature 193:167–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Weller and R. Schneider (BAM Federal Institute for Materials Research and Testing) for providing the cell culture facility and P. Lasch (CytoSpec, Inc.) for Cytospec software. D. D. and J. K. acknowledge funding from the European Research Council (ERC Starting Grant no. 2594 32 MULTIBIOPHOT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Kneipp.

Additional information

Published in the topical collection Optical Nanosensing in Cells with guest editor Francesco Baldini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6085 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornemann, A., Drescher, D., Flemig, S. et al. Intracellular SERS hybrid probes using BSA–reporter conjugates. Anal Bioanal Chem 405, 6209–6222 (2013). https://doi.org/10.1007/s00216-013-7054-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7054-3

Keywords

Navigation