Analytical and Bioanalytical Chemistry

, Volume 405, Issue 19, pp 6209–6222 | Cite as

Intracellular SERS hybrid probes using BSA–reporter conjugates

  • Andrea Hornemann
  • Daniela Drescher
  • Sabine Flemig
  • Janina Kneipp
Research Paper
Part of the following topical collections:
  1. Optical Nanosensing in Cells


Surface-enhanced Raman scattering (SERS) hybrid probes are characterized by the typical spectrum of a reporter molecule. In addition, they deliver information from their biological environment. Here, we report SERS hybrid probes generated by conjugating different reporter molecules to bovine serum albumin (BSA) and using gold nanoparticles as plasmonic core. Advantages of the BSA-conjugate hybrid nanoprobes over other SERS nanoprobes are a high biocompatibility, stabilization of the gold nanoparticles in the biological environment, stable reporter signals, and easy preparation. The coupling efficiencies of the BSA–reporter conjugates were determined by MALDI-TOF-MS. The conjugates’ characteristic SERS spectra differ from the spectra of unbound reporter molecules. This is a consequence of the covalent coupling, which leads to altered SERS enhancement and changes in the chemical structures of the reporter and of BSA. The application of the BSA–reporter conjugate hybrid probes in 3T3 cells, including duplex imaging, is demonstrated. Hierarchical cluster analysis and principal components analysis were applied for multivariate imaging using the SERS signatures of the incorporated SERS hybrid nanoprobes along with the spectral information from biomolecules in endosomal structures of cells. The results suggest more successful applications of the SERS hybrid probes in cellular imaging and other unordered high-density bioanalytical sensing.


Single pixel spectrum obtained with SERS hybrid nanoprobes (here: BSA-AO conjugate on gold nanoparticles) inside living 3T3 cells. The distribution of SERS hybrid nanoprobes in 3T3 fibroblast cells can be obtained from chemical mapping, and from hierarchical cluster analysis (HCA) mapping employing the full spectral range from 300–1700 cm-1


Bovine serum albumin Nanosensor SERS multiplexing 3T3 cells Gold nanoparticles Hybrid nanoprobe 



We thank M. Weller and R. Schneider (BAM Federal Institute for Materials Research and Testing) for providing the cell culture facility and P. Lasch (CytoSpec, Inc.) for Cytospec software. D. D. and J. K. acknowledge funding from the European Research Council (ERC Starting Grant no. 2594 32 MULTIBIOPHOT).

Supplementary material

216_2013_7054_MOESM1_ESM.pdf (5.9 mb)
ESM 1 (PDF 6085 kb)


  1. 1.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  2. 2.
    Otto A (ed) (1984) ‘Classical’ and ‘Chemical’ origins. Light scattering in solids IV, Electronic Scattering, Spin Effects, SERS and Morphic Effects. Springer, BerlinGoogle Scholar
  3. 3.
    Persson BNJ (1981) On the theory of surface-enhanced Raman scattering. Chem Phys Lett 82(3):561–565CrossRefGoogle Scholar
  4. 4.
    Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRefGoogle Scholar
  5. 5.
    Joseph V, Engelbrekt C, Zhang J, Gernert U, Ulstrup J, Kneipp J (2012) Charakterisierung Nanopartikel-katalysierter Reaktionen durch oberflächenverstärkte Raman-Streuung. Angew Chem 124(30):7712–7716CrossRefGoogle Scholar
  6. 6.
    Gühlke M, Selve S, Kneipp J (2012) Magnetic separation and SERS observation of analyte molecules on bifunctional silver/iron oxide composite nanostructures. J Raman Spectrosc 43(9):1204–1207Google Scholar
  7. 7.
    Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77(8):2381–2385CrossRefGoogle Scholar
  8. 8.
    Matschulat A, Drescher D, Kneipp J (2010) Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems. ACS Nano 4(6):3259–3269CrossRefGoogle Scholar
  9. 9.
    Wang Y, Seebald JL, Szeto DP, Irudayaraj J (2010) Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano 4(7):4039–4053CrossRefGoogle Scholar
  10. 10.
    Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP (2010) Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal Chem 82(20):8382–8385CrossRefGoogle Scholar
  11. 11.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Letters 6(10):2225–2231CrossRefGoogle Scholar
  12. 12.
    Kneipp J, Harald K, Anpuchchelvi R, Robert WR, Katrin K (2009) Optical probing and imaging of live cells using SERS labels. 40(1):1–5Google Scholar
  13. 13.
    Joseph V, Matschulat A, Polte J, Rolf S, Emmerling F, Kneipp J (2011) SERS enhancement of gold nanospheres of defined size. J Raman Spectrosc 42(9):1736–1742CrossRefGoogle Scholar
  14. 14.
    Drescher D, Kneipp J (2012) Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 41(17):5780–5799CrossRefGoogle Scholar
  15. 15.
    Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Singh Kamboj S, Singh Bakshi M (2012) Bovine serum albumin bioconjugated gold nanoparticles: synthesis, hemolysis, and cytotoxicity toward cancer cell lines. J Phys Chem C 116(15):8834–8843CrossRefGoogle Scholar
  16. 16.
    Naczynski DJ, Andelman T, Pal D, Chen S, Riman RE, Roth CM, Moghe PV (2010) Albumin nanoshell encapsulation of near-infrared-excitable rare-earth nanoparticles enhances biocompatibility and enables targeted cell imaging. Small 6(15):1631–1640CrossRefGoogle Scholar
  17. 17.
    Yonzon CR, Haynes CL, Zhang X, Walsh JT, Van Duyne RP (2003) A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal Chem 76(1):78–85CrossRefGoogle Scholar
  18. 18.
    Lakowicz J, Geddes C, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J Fluoresc 14(4):425–441CrossRefGoogle Scholar
  19. 19.
    Dominguez-Medina S, McDonough S, Swanglap P, Landes CF, Link S (2012) In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28(24):9131–9139CrossRefGoogle Scholar
  20. 20.
    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632CrossRefGoogle Scholar
  21. 21.
    Osawa M, Matsuda N, Yoshii K, Uchida I (1994) Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg–Teller contribution. J Phys Chem 98(48):12702–12707CrossRefGoogle Scholar
  22. 22.
    Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185(1):131–135CrossRefGoogle Scholar
  23. 23.
    Hungerford G, Benesch J, Mano JF, Reis RL (2007) Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin. Photochem Photobiol Sci 6(2):152–158CrossRefGoogle Scholar
  24. 24.
    Bose D, Sarkar D, Chattopadhyay N (2010) Probing the binding interaction of a phenazinium dye with serum transport proteins: a combined fluorometric and circular dichroism study. Photochem Photobiol 86(3):538–544CrossRefGoogle Scholar
  25. 25.
    Hirayama K, Akashi S, Furuya M, Fukuhara K (1990) Rapid confirmation and revision of the primary structure of bovine serum-albumin by ESIMS and FRIT-FAB LC MS. Biochem Biophys Res Commun 173(2):639–646CrossRefGoogle Scholar
  26. 26.
    Muccio Z, Jackson GP (2009) Isotope ratio mass spectrometry. Analyst 134:213–222CrossRefGoogle Scholar
  27. 27.
    Ciric-Marjanovic G, Blinova NV, Trchova M, Stejskal J (2007) Chemical oxidative polymerization of safranines. J Phys Chem B 111(9):2188–2199CrossRefGoogle Scholar
  28. 28.
    Wengatz I, Schmid RD, Kreissig S, Wittmann C, Hock B, Ingendoh A, Hillenkamp F (1992) Determination of the hapten density of immuno-conjugates by matrix-assisted UV laser desorption/ionization mass spectrometry. Anal Lett 25(11):1983–1997CrossRefGoogle Scholar
  29. 29.
    Zimmermann F, Hossenfelder B, Panitz JC, Wokaun A (1994) SERRS study of acridine orange and its binding to DNA strands. J Phys Chem 98(48):12796–12804CrossRefGoogle Scholar
  30. 30.
    Ni F, Feng H, Gorton L, Cotton TM (1990) Electrochemical and SERS studies of chemically modified electrodes—Nile Blue-A, a mediator for NADH oxidation. Langmuir 6(1):66–73CrossRefGoogle Scholar
  31. 31.
    Bloomfield V (1966) The structure of bovine serum albumin at low pH. Biochemistry 5(2):684–689CrossRefGoogle Scholar
  32. 32.
    Majoube M, Henry M (1991) Fourier-transform Raman and infrared and surface-enhanced Raman-spectra for rhodamine-6g. Spectrochim Acta A Mol Biomol Spectrosc 47(9–10):1459–1466Google Scholar
  33. 33.
    Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman-spectroscopy of rhodamine-6g adsorbed on colloidal silver. J Phys Chem 88(24):5935–5944CrossRefGoogle Scholar
  34. 34.
    Hildebrandt P, Stockburger M (1986) Surface enhanced resonance Raman-study on fluorescein dyes. J Raman Spectrosc 17(1):55–58CrossRefGoogle Scholar
  35. 35.
    Feldherr CM, Kallenbach E, Schultz N (1984) Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol 99(6):2216–2222CrossRefGoogle Scholar
  36. 36.
    Bright NA, Reaves BJ, Mullock BM, Luzio JP (1997) Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17):2027–2040Google Scholar
  37. 37.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C 114(16):7421–7426CrossRefGoogle Scholar
  38. 38.
    Podstawka E, Ozaki Y, Proniewicz LM (2004) Adsorption of SS containing proteins on a colloidal silver surface studied by surface-enhanced Raman spectroscopy. Appl Spectrosc 58(10):1147–1156CrossRefGoogle Scholar
  39. 39.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395CrossRefGoogle Scholar
  40. 40.
    Rinderknecht H (1962) Ultra-rapid fluorescent labelling of proteins. Nature 193:167–168CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrea Hornemann
    • 1
    • 2
    • 3
  • Daniela Drescher
    • 1
    • 2
  • Sabine Flemig
    • 2
  • Janina Kneipp
    • 1
    • 2
  1. 1.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  2. 2.BAM Bundesanstalt für Materialforschung und -prüfungBerlinGermany
  3. 3.Physikalisch-Technische Bundesanstalt (PTB)BerlinGermany

Personalised recommendations