Analytical and Bioanalytical Chemistry

, Volume 405, Issue 18, pp 6077–6085 | Cite as

Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry

  • Ugo Bussy
  • Marcel Delaforge
  • Chaimaâ El-Bekkali
  • Véronique Ferchaud-Roucher
  • Michel Krempf
  • Illa Tea
  • Nicolas Galland
  • Denis Jacquemin
  • Mohammed BoujtitaEmail author
Research Paper


A comparative study of the electrochemical conversion and the biotransformation performed by the cytochrome P450 (CYP450) obtained by rat liver microsomes has been achieved to elucidate the oxidation mechanism of both acebutolol and alprenolol. For this purpose, a wide range of reactions such as N-dealkylation, O-dealkoxylation, aromatic hydroxylation, benzyl hydroxylation, alkyl hydroxylation, and aromatic hydroxylation have been examined in this study, and their mechanisms have been compared. Most of the results of the electrochemical oxidation have been found to be in accordance with those obtained by incubating acebutolol and alprenolol in the presence of CYP450, i.e., N-dealkylation, benzyl hydroxylation, and O-dealkoxylation reactions catalyzed by liver microsomes were found to be predicted by the electrochemical oxidation. The difficulty for the electrochemical process to mimic both aromatic and alkyl hydroxylation reactions has also been discussed, and the hypothesis for the absence of aromatic hydroxylated and alkyl hydroxylated products, respectively, for alprenolol and acebutolol, under the anodic oxidation has been supported by theoretical calculation. The present study highlights the potential and limitation of coupling of electrochemistry–liquid chromatography–high-resolution mass spectrometry for the study of phase I and phase II reactions of acebutolol and alprenolol.


The electrochemical conversion versus the biotransformation catalyzed by CYP450


EC-MS EC-LC-HRMS CYP450 Drug metabolism prediction β-Blockers 



The authors thank CNRS, the University of Nantes, and the French Ministry of Higher Education and Research for financial support. D.J. acknowledges the European Research Council (ERC) and the Région des Pays de la Loire for financial support in the framework of a Starting Grant (Marches–278845) and a recrutement sur poste stratégique, respectively. This research used resources of (1) the GENCI-CINES/IDRIS (grant c2012085117), (2) Centre de Calcul Intensif des Pays de Loire (CCIPL), and (3) a local Troy cluster.

Supplementary material

216_2013_7050_MOESM1_ESM.pdf (539 kb)
ESM 1 (PDF 539 kb)


  1. 1.
    Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM (2003) Toxicol Appl Pharm 189(3):233–246CrossRefGoogle Scholar
  2. 2.
    Li AP (2001) Drug Discov Today 6:357–366CrossRefGoogle Scholar
  3. 3.
    Jahn S, Faber H, Zazzeroni R, Karst U (2012) Rapid Commun Mass Spectrom 26:1415–1425CrossRefGoogle Scholar
  4. 4.
    Cavalieri EL, Rogan EG, Devanesan PD, Cremonesi P, Cerny RL, Gross ML, Bodell WJ (1990) Biochemistry 29:4820–4827CrossRefGoogle Scholar
  5. 5.
    Jurva U, Holmen A, Groenberg G, Masimirembwa C, Weidolf L (2008) Chem Res Toxicol 21(4):928–935CrossRefGoogle Scholar
  6. 6.
    Waldon DJ, Teffera Y, Colletti AE, Liu J-Z, Zurcher D, Copeland KW, Zhao Z-Y (2011) Chem Res Toxicol 23(12):1947–1953CrossRefGoogle Scholar
  7. 7.
    Ma S, Subramanian R (2006) J Mass Spectrom 41(9):1121–1139CrossRefGoogle Scholar
  8. 8.
    Faber H, Jahn S, Kunnemeyer J, Simon H, Melles D, Vogel M, Karst U (2011) Angew Chem 50(37):A52–A58Google Scholar
  9. 9.
    Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, Johansen TN, Olsen J (2008) Chem Res Toxicol 21(5):1107–1119CrossRefGoogle Scholar
  10. 10.
    Jurva U, Wikstrom HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17(8):800–810CrossRefGoogle Scholar
  11. 11.
    Shono T, Toda T, Oshino N (1982) J Am Chem Soc 104(9):2639–2641CrossRefGoogle Scholar
  12. 12.
    Shono T, Toda T, Oshino N (1981) Drug Metab Dispos 9:481–482Google Scholar
  13. 13.
    Johansson T, Weidolf L, Castagnoli JN, Jurva U (2010) Rapid Commun Mass Spectrom 24(9):1231–1240CrossRefGoogle Scholar
  14. 14.
    Nouri-Nigjeh E, Bischoff R, Bruins AP, Permentier HP (2011) Curr Drug Metab 12(4):359–371CrossRefGoogle Scholar
  15. 15.
    Jahn S, Karst U (2012) J Chromatogr A 1259:16–49CrossRefGoogle Scholar
  16. 16.
    Jahn S, Baumann A, Roscher J, Hense K, Zazzeroni R, Karst U (2011) J Chromatogr A 1218:9210–9220CrossRefGoogle Scholar
  17. 17.
    Hoffmann T, Hofmann D, Klumpp E, Kuppers S (2011) Anal Bioanal Chem 399:1859–1868CrossRefGoogle Scholar
  18. 18.
    Lohmann W, Doetzer R, Guetter G, Van LSM, Karst U (2009) J Am Soc Mass Spectrom 20(1):138–145CrossRefGoogle Scholar
  19. 19.
    Andresen BD, Davis FT (1979) Drug Metab Dispos 79(6):360–365Google Scholar
  20. 20.
    Hoffmann KJ, Arfwidsson A, Borg KO, Skanberg I (1979) Xenobiotica 9:93–106CrossRefGoogle Scholar
  21. 21.
    Kremers PBP, Cresteil T, de Graeve J, Columelli S, Leroux JP, Gielen JE (1981) Eur J Biochem 118(3):599–606CrossRefGoogle Scholar
  22. 22.
    Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) Rapid Commun Mass Spectrom 20:1989–1994CrossRefGoogle Scholar
  23. 23.
    Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA (2007) Rapid Commun Mass Spectrom 21:1485–1496CrossRefGoogle Scholar
  24. 24.
    Bussy U, Tea I, Ferchaud-Roucher V, Krempf M, Silvestre V, Galland N, Jacquemin D, Andresen-Bergström M, Jurva U, Boujtita M (2013) Anal Chim Acta 762:39–46CrossRefGoogle Scholar
  25. 25.
    Frisch MJ (2009) Gaussian 09 Revision A02. Gaussian Inc, WallingfordGoogle Scholar
  26. 26.
    Boese AD, Martin JML (2004) J Chem Phys 121(8):3405–3416CrossRefGoogle Scholar
  27. 27.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(18):6378–6396CrossRefGoogle Scholar
  28. 28.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926CrossRefGoogle Scholar
  29. 29.
    Geerlings P, De PF, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  30. 30.
    Bussy U, Ferchaud-Roucher V, Tea I, Krempf M, Silvestre V, Boujtita M (2012) Electrochim Acta 69:351–357CrossRefGoogle Scholar
  31. 31.
    Nassar AEF, Adams PE (2003) Curr Drug Metab 4:259–271CrossRefGoogle Scholar
  32. 32.
    Johansson T, Weidolf L, Jurva U (2007) Rapid Commun Mass Spectrom 21(14):2323–2331CrossRefGoogle Scholar
  33. 33.
    Hinson JA, Nelson SD, Mitchell JR (1977) Mol Pharmacol 13(4):625–633Google Scholar
  34. 34.
    Hinson JA, Nelson SD, Gillette JR (1979) Mol Pharmacol 15(2):419–427Google Scholar
  35. 35.
    Yun CH, Miller GP, Guengerich FP (2001) Biochemistry 40:4521–4530CrossRefGoogle Scholar
  36. 36.
    Guengerich FP (2001) Chem Res Toxicol 14(6):611–650CrossRefGoogle Scholar
  37. 37.
    Guengerich FP, Yun C-H, Macdonald TL (1996) J Biol Chem 271:27321–27329CrossRefGoogle Scholar
  38. 38.
    Meunier B, De VSP, Shaik S (2004) Chem Rev 104(9):3947–3980CrossRefGoogle Scholar
  39. 39.
    Lohmann W, Karst U (2009) Anal Bioanal Chem 394(5):1341–1348CrossRefGoogle Scholar
  40. 40.
    Van Leeuwen SM, Blankert B, Kauffmann J-M, Karst U (2005) Anal Bioanal Chem 382(3):742–750CrossRefGoogle Scholar
  41. 41.
    Anzenbacher P, Niwa T, Tolbert LM, Sirimanne SR, Guengerich FP (1996) Biochemistry 35(8):2512–2520CrossRefGoogle Scholar
  42. 42.
    Glowka ML, Codding PW (1989) Acta Crystallogr Sect C: Cryst Struct Commun C45:902–906CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ugo Bussy
    • 1
  • Marcel Delaforge
    • 2
  • Chaimaâ El-Bekkali
    • 1
  • Véronique Ferchaud-Roucher
    • 3
  • Michel Krempf
    • 3
  • Illa Tea
    • 1
  • Nicolas Galland
    • 1
  • Denis Jacquemin
    • 1
    • 4
  • Mohammed Boujtita
    • 1
    Email author
  1. 1.LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM)UMR 6230Nantes cedex 3France
  2. 2.CEA, Bioenergetics, Structural Biology and Mechanisms UnitCNRS UMR 8221Gif-Sur-Yvette CedexFrance
  3. 3.Université de Nantes, Human Nutrition Research Center of Nantes, Plateforme Spectrométrie de Masse, IRS-UNNantesFrance
  4. 4.Institut Universitaire de FranceParis Cedex 5France

Personalised recommendations