Skip to main content
Log in

Rapid comprehensive characterization of crude oils by thermogravimetry coupled to fast modulated gas chromatography–single photon ionization time-of-flight mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Comprehensive multi-dimensional hyphenation of a thermogravimetry device (i.e. a thermobalance) to gas chromatography and single photon ionization–time-of-flight mass spectrometry (TG–GC×SPI–MS) has been used to investigate two crude oil samples of different geographical origin. The source of the applied vacuum ultraviolet radiation is an electron beam pumped rare gas excimer lamp (EBEL). The soft photoionization favors the formation of molecular ions. Introduction of a fast, rapidly modulated gas chromatographic separation step in comparison with solely TG–SPI–MS enables strongly enhanced detection especially with such highly complex organic matrices as crude oil. In contrast with former TG–SPI–MS measurements, separation and identification of overlying substances is possible because of different GC retention times. The specific contribution of isobaric compounds to one mass signal is determined for alkanes, naphthalenes, alkylated benzenes, and other compounds.

Specific characteristics of a two-dimensional TG–GC×SPI–MS contour plot obtained from Turkish crude oil. The complete m/z and TG temperature ranges are displayed in a. The magnified region from m/z 50–250 and 140–170 °C reveals the “pixilated” structure (b). Parts c and d reveal the system’s ability to investigate compounds in a broad m/z range with limitations for very-high and very-low boiling compounds as shown for m/z 260 and m/z 70, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeske H, Schirp A, Cornelius F (2012) Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochim Acta 543:165–171. doi:10.1016/j.tca.2012.05.016

    Article  CAS  Google Scholar 

  2. Materazzi S, Vecchio S (2013) Recent applications of evolved gas analysis by infrared spectroscopy (IR-EGA). Appl Spectrosc Rev 48(8):654–689. doi:10.1080/05704928.2013.786722

  3. Materazzi S, Vecchio S (2011) Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev 46(4):261–340. doi:10.1080/05704928.2011.565533

    Article  Google Scholar 

  4. Kaisersberger E, Post E (1997) Practical aspects for the coupling of gas analytical methods with thermal-analysis instruments. Thermochim Acta 295(1–2):73–93. doi:10.1016/s0040-6031(97)00099-3

    Article  CAS  Google Scholar 

  5. Urabe T, Imasaka T (2000) Analysis of thermal decomposition products arising from polyvinyl chloride analogs by supersonic jet/multiphoton ionization/mass spectrometry. Talanta 52(4):703–709. doi:10.1016/s0039-9140(00)00423-9

    Article  CAS  Google Scholar 

  6. Saraji-Bozorgzad MR, Streibel T, Kaisersberger E, Denner T, Zimmermann R (2011) Detection of organic products of polymer pyrolysis by thermogravimetry-supersonic jet-skimmer time-of-flight mass spectrometry (TG-Skimmer-SPI-TOFMS) using an electron beam pumped rare gas excimer VUV-light source (EBEL) for soft photo ionisation. J Therm Anal Calorim 105(2):691–697. doi:10.1007/s10973-011-1383-2

    Article  CAS  Google Scholar 

  7. Linstrom PJ, Mallard WG (2013) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and. Technology, Gaithersburg MD

    Google Scholar 

  8. Baumgartner E, Nachbaur E (1977) Thermogravimetry combined with chemical ionization mass spectrometry a new technique in thermal analysis. Thermochim Acta 19(1):3–12. doi:10.1016/0040-6031(77)80042-7

    Article  CAS  Google Scholar 

  9. Dyszel SM (1983) Thermogravimetry coupled with atmospheric pressure ionization mass spectrometry. A new combined technique. Thermochim Acta 61(1–2):169–183. doi:10.1016/0040-6031(83)80313-x

    Article  CAS  Google Scholar 

  10. Schulten H-R (1986) Pyrolysis-field ionization mass spectrometry - a new method for direct, rapid characterization of tobacco. Beitr Tabakforsch Int 13(5):219–227

    Google Scholar 

  11. Boutin M, Lesage J, Ostiguy C, Bertrand MJ (2004) Temperature-programmed pyrolysis hyphenated with metastable atom bombardment ionization mass spectrometry (TPPy/MAB-MS) for the identification of additives in polymers. J Am Soc Mass Spectrom 15(9):1315–1319. doi:10.1016/j.jasms.2004.05.011

    Article  CAS  Google Scholar 

  12. Hanley L, Zimmermann R (2009) Light and molecular ions: the emergence of vacuum UV Single-Photon Ionization in MS. Anal Chem 81(11):4174–4182. doi:10.1021/ac8013675

    Article  CAS  Google Scholar 

  13. Hertz R, Streibel T, Liu C, McAdam K, Zimmermann R (2012) Microprobe sampling—photo ionization-time-of-flight mass spectrometry for in situ chemical analysis of pyrolysis and combustion gases: examination of the thermo-chemical processes within a burning cigarette. Anal Chim Acta 714:104–113. doi:10.1016/j.aca.2011.11.059

    Article  CAS  Google Scholar 

  14. Arii T, Motomura K, Otake S (2011) Evolved Gas Analysis Using Photoionization Mass Spectrometry, EGA-PIMS: characterization of pyrolysis products from polymers. J Mass Spec Soc Jap 59(1):5–11

    Article  CAS  Google Scholar 

  15. Fischer M, Wohlfahrt S, Saraji-Bozorgzad M, Matuschek G, Post E, Denner T, Streibel T, Zimmermann R (2013) Thermal analysis/evolved gas analysis using single photon ionization. J Therm Anal Calorim. doi:10.1007/s10973-013-3143-y, Just accepted manuscript

    Google Scholar 

  16. Saraj-Bozorgzad M, Geissler R, Streibel T, Muhlberger F, Sklorz M, Kaisersberger E, Denner T, Zimmermann R (2008) Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: A tool to investigate the chemical signature of thermal decomposition of polymeric materials. Anal Chem 80(9):3393–3403. doi:10.1021/ac702599y

    Article  Google Scholar 

  17. Streibel T, Geissler R, Saraji-Bozorgzad M, Sklorz M, Kaisersberger E, Denner T, Zimmermann R (2009) Evolved gas analysis (EGA) in TG and DSC with single photon ionisation mass spectrometry (SPI-MS): molecular organic signatures from pyrolysis of soft and hard wood, coal, crude oil and ABS polymer. J Therm Anal Calorim 96(3):795–804. doi:10.1007/s10973-009-0035-2

    Article  CAS  Google Scholar 

  18. Arii T, Senda T, Fujii N (1995) A combined thermogravimetric-gas chromatographic/mass spectrometric analysis (TG-GC/MS) using a high resolution TG technique. Thermochim Acta 267:209–221. doi:10.1016/0040-6031(95)02479-4

    Article  CAS  Google Scholar 

  19. Whiting LF, Langvardt PW (1984) On-column sampling device for thermogravimetry/capillary gas chromatography/mass spectrometry. Anal Chem 56(9):1755–1758. doi:10.1021/ac00273a057

    Article  CAS  Google Scholar 

  20. Welthagen W, Mitschke S, Mühlberger F, Zimmermann R (2007) One-dimensional and comprehensive two-dimensional gas chromatography coupled to soft photo ionization time-of-flight mass spectrometry: a two- and three-dimensional separation approach. J Chromatogr A 1150(1–2):54–61. doi:10.1016/j.chroma.2007.03.033

    CAS  Google Scholar 

  21. Saraji-Bozorgzad MR, Eschner M, Groeger TM, Streibel T, Geissler R, Kaisersbeiger E, Denner T, Zimmermann R (2010) Highly resolved online organic-chemical speciation of evolved gases from thermal analysis devices by cryogenically modulated fast gas chromatography coupled to single photon ionization mass spectrometry. Anal Chem 82(23):9644–9653. doi:10.1021/ac100745h

    Article  CAS  Google Scholar 

  22. Muhlberger F, Wieser J, Morozov A, Ulrich A, Zimmermann R (2005) Single-photon ionization quadrupole mass spectrometry with an electron beam plumped excimer light source. Anal Chem 77(7):2218–2226. doi:10.1021/ac048319f

    Article  CAS  Google Scholar 

  23. Hsu CS, Hendrickson CL, Rodgers RP, McKenna AM, Marshall AG (2011) Petroleomics: advanced molecular probe for petroleum heavy ends. J Mass Spectrom 46(4):337–343. doi:10.1002/jms.1893

    Article  CAS  Google Scholar 

  24. Zhang Z, Greenwood P, Zhang Q, Rao D, Shi W (2012) Laser ablation GC–MS analysis of oil-bearing fluid inclusions in petroleum reservoir rocks. Org Geochem 43:20–25. doi:10.1016/j.orggeochem.2011.11.005

    Article  Google Scholar 

  25. Machado ME, Cappelli Fontanive F, Oliveira JV, Caramão EB, Alcaraz Zini C (2011) Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection. Anal Bioanal Chem 401(8):2433–2444. doi:10.1007/s00216-011-5171-4

    Article  CAS  Google Scholar 

  26. Nizio KD, McGinitie TM, Harynuk JJ (2012) Comprehensive multidimensional separations for the analysis of petroleum. J Chromatogr A 1255:12–23. doi:10.1016/j.chroma.2012.01.078

    Article  CAS  Google Scholar 

  27. Bae E, Na J-G, Chung SH, Kim HS, Kim S (2010) Identification of about 30 000 Chemical Components in Shale Oils by Electrospray Ionization (ESI) and Atmospheric Pressure Photoionization (APPI) Coupled with 15 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) and a Comparison to Conventional Oil. Energy Fuel 24(4):2563–2569. doi:10.1021/ef100060b

    Article  CAS  Google Scholar 

  28. Isaacman G, Wilson KR, Chan AWH, Worton DR, Kimmel JR, Nah T, Hohaus T, Gonin M, Kroll JH, Worsnop DR, Goldstein AH (2012) Improved resolution of hydrocarbon structures and constitutional isomers in complex mixtures using gas chromatography–vacuum ultraviolet–mass spectrometry. Anal Chem 84(5):2335–2342. doi:10.1021/ac2030464

    Article  CAS  Google Scholar 

  29. Rowland SJ, West CE, Scarlett AG, Jones D (2011) Identification of individual acids in a commercial sample of naphthenic acids from petroleum by two-dimensional comprehensive gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 25(12):1741–1751. doi:10.1002/rcm.5040

    Article  CAS  Google Scholar 

  30. Geissler R, Saraji-Bozorgzad M, Streibel T, Kaisersberger E, Denner T, Zimmermann R (2009) Investigation of different crude oils applying thermal analysis/mass spectrometry with soft photoionisation. J Therm Anal Calorim 96(3):813–820. doi:10.1007/s10973-009-0034-3

    Article  CAS  Google Scholar 

  31. Geissler R, Saraji-Bozorgzad MR, Groger T, Fendt A, Streibel T, Sklorz M, Krooss BM, Fuhrer K, Gonin M, Kaisersberger E, Denner T, Zimmermann R (2009) Single photon ionization orthogonal acceleration time-of-flight mass spectrometry and resonance enhanced multiphoton ionization time-of-flight mass spectrometry for evolved gas analysis in thermogravimetry: comparative analysis of crude oils. Anal Chem 81(15):6038–6048. doi:10.1021/ac900216y

    Article  CAS  Google Scholar 

  32. Edwards M, Mostafa A, Gorecki T (2011) Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation. Anal Bioanal Chem 401(8):2335–2349. doi:10.1007/s00216-011-5100-6

    Article  CAS  Google Scholar 

  33. Morgan TJ, George A, Alvarez-Rodriguez P, Millan M, Herod AA, Kandiyoti R (2010) Estimating molecular masses of petroleum-derived fractions: High mass (> 2000 u) materials in maltenes and asphaltenes from Maya crude oil. J Chromatogr A 1217(24):3804–3818. doi:10.1016/j.chroma.2010.04.024

    Article  CAS  Google Scholar 

  34. Eschner MS, Zimmermann R (2011) Determination of Photoionization Cross-Sections of Different Organic Molecules Using Gas Chromatography Coupled to Single-Photon Ionization (SPI) Time-of-Flight Mass Spectrometry (TOF-MS) with an Electron-Beam-Pumped Rare Gas Excimer Light Source (EBEL): Influence of Molecular Structure and Analytical Implications. Appl Spectrosc 65(7):806–816. doi:10.1366/11-06233

    Article  CAS  Google Scholar 

  35. Eschner MS, Groger TM, Horvath T, Gonin M, Zimmermann R (2011) Quasi-Simultaneous acquisition of hard electron ionization and soft single-photon ionization mass spectra during GC/MS analysis by rapid switching between both ionization methods: analytical concept, setup, and application on diesel fuel. Anal Chem 83(10):3865–3872. doi:10.1021/ac200356t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Bavarian Science Foundation (Bayerische Forschungsstiftung, BFS) and support from Netzsch-Gerätebau GmbH, Selb, Germany, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zimmermann.

Additional information

Published in the topical collection Photo Ionisation in Mass Spectrometry with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlfahrt, S., Fischer, M., Saraji-Bozorgzad, M. et al. Rapid comprehensive characterization of crude oils by thermogravimetry coupled to fast modulated gas chromatography–single photon ionization time-of-flight mass spectrometry. Anal Bioanal Chem 405, 7107–7116 (2013). https://doi.org/10.1007/s00216-013-7029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7029-4

Keywords

Navigation