Skip to main content
Log in

Fully automated standard addition method for the quantification of 29 polar pesticide metabolites in different water bodies using LC-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A reliable quantification by LC-ESI-MS/MS as the most suitable analytical method for polar substances in the aquatic environment is usually hampered by matrix effects from co-eluting compounds, which are unavoidably present in environmental samples. The standard addition method (SAM) is the most appropriate method to compensate matrix effects. However, when performed manually, this method is too labour- and time-intensive for routine analysis. In the present work, a fully automated SAM using a multi-purpose sample manager “Open Architecture UPLC®-MS/MS” (ultra-performance liquid chromatography tandem mass spectrometry) was developed for the sensitive and reliable determination of 29 polar pesticide metabolites in environmental samples. A four-point SAM was conducted parallel to direct-injection UPLC-ESI-MS/MS determination that was followed by a work flow to calculate the analyte concentrations including monitoring of required quality criteria. Several parameters regarding the SAM, chromatography and mass spectrometry conditions were optimised in order to obtain a fast as well as reliable analytical method. The matrix effects were examined by comparison of the SAM with an external calibration method. The accuracy of the SAM was investigated by recovery tests in samples of different catchment areas. The method detection limit was estimated to be between 1 and 10 ng/L for all metabolites by direct injection of a 10-μL sample. The relative standard deviation values were between 2 and 10 % at the end of calibration range (30 ng/L). About 200 samples from different water bodies were examined with this method in the Rhine and Ruhr region of North Rhine-Westphalia (Germany). Approximately 94 % of the analysed samples contained measurable amounts of metabolites. For most metabolites, low concentrations ≤0.10 μg/L were determined. Only for three metabolites were the concentrations in ground water significantly higher (up to 20 μg/L). In none of the examined drinking water samples were the health-related indication values (between 1 and 3 μg/L) for non-relevant metabolites exceeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wiebke T (2010) Übersicht nicht relevanter Grundwassermetaboliten von Pflanzenschutzmittel-Wirkstoffen. BVL - Bundesamt für Verbraucherschutz und Lebensmittelsicherheit 2010

  2. Pflanzenschutzmittel – Stoffgruppen und Anwendung (2008) Bayerisches Landesamt für Umwelt. http://www.lfu.bayern.de/umweltwissen/doc/uw_51_pflanzenschutzmittel_stoffgruppen_anwendung.pdf

  3. Chicharro M, Bermejo E, Sánchez A, Zapardiel A, Fernandez-Gutierrez A, Arraez D (2005) Multiresidue analysis of phenylurea herbicides in environmental waters by capillary electrophoresis using electrochemical detection. Anal Bioanal Chem 382(2):519–526

    Article  CAS  Google Scholar 

  4. Pflanzenschutzmittel in der Umwelt (2008) http://www.lfu.bayern.de/umweltwissen/doc/uw_52_pflanzenschutzmittel_umwelt.pdf

  5. Schmidt CK, Brauch HJ (2008) N,N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ Sci Technol 42(17):6340–6346

    Article  CAS  Google Scholar 

  6. Gesundheitliche Orientierungswerte (GOW) für nicht relevante Metaboliten (nrM) von Wirkstoffen aus Pflanzenbehandlungs- und Schädlingsbekämpfungsmitteln (2009) http://www.umweltdaten.de/wasser/themen/trinkwassertoxikologie/tabelle_gow_nrm.pdf

  7. Gesundheitliche Orientierungswerte (GOW) für nicht relevante Metaboliten (nrM) von Wirkstoffen aus Pflanzenschutzmitteln (PSM) (2008) http://www.umweltdaten.de/wasser/themen/trinkwassertoxikologie/tabelle_gow_nrm.pdf

  8. 91/414/EEC D (2003) Guidance Document of the assessment of the relevance of metabolites in groundwater of substances regulated under council derective 91/414/EEC EUROPEAN COMMISSION

  9. Dieter HH (2010) The relevance of “non-relevant metabolites” from plant protection products (PPPs) for drinking water: the German view. Regul Toxicol Pharmacol 56(2):121–125

    Article  CAS  Google Scholar 

  10. Grundwasser-Überwachungsprogramm (2009) LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg

  11. Kowal S, Balsaa P, Werres F, Schmidt TC (2009) Determination of the polar pesticide degradation product N,N-dimethylsulfamide in aqueous matrices by UPLC-MS/MS. Anal Bioanal Chem 395(6):1787–1794

    Article  CAS  Google Scholar 

  12. Kowal S, Balsaa P, Werres F, Schmidt TC (2012) Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS. Anal Bioanal Chem 403(6):1707–1717

    Article  CAS  Google Scholar 

  13. Polar pesticide-metabolites in drinking and mineral water (2008) Chemisches und Veterinäruntersuchungsamt. http://cvuas.untersuchungsämter-bw.de/pdf/EPRW08-watermetabolites.pdf

  14. Freitas LG, Gotz CW, Ruff M, Singer HP, Muller SR (2004) Quantification of the new triketone herbicides, sulcotrione and mesotrione, and other important herbicides and metabolites, at the ng/l level in surface waters using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1028(2):277–286

    Article  CAS  Google Scholar 

  15. Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43(18):7039–7046

    Article  CAS  Google Scholar 

  16. Niessen WMA (2006) Liquid chromatography–mass spectrometry, 3rd edn. Taylor & Francis, New York

    Book  Google Scholar 

  17. Choi BK, Gusev AI, Hercules DM (1999) Postcolumn introduction of an internal standard for quantitative LC-MS analysis. Anal Chem 71(18):4107–4110

    Article  CAS  Google Scholar 

  18. Choi BK, Hercules DM, Gusev AI (2001) LC-MS/MS signal suppression effects in the analysis of pesticides in complex environmental matrices. Anal Bioanal Chem 369(3–4):370–377

    CAS  Google Scholar 

  19. Ito S, Tsukada K (2002) Matrix effect and correction by standard addition in quantitative liquid chromatographic-mass spectrometric analysis of diarrhetic shellfish poisoning toxins. J Chromatogr A 943(1):39–46

    Article  CAS  Google Scholar 

  20. Quintana JB, Reemtsma T (2004) Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 18(7):765–774

    Article  CAS  Google Scholar 

  21. Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray-tandem mass spectrometry. Clin Biochem 38(4):328–334

    Article  CAS  Google Scholar 

  22. Trufelli H, Palma P, Famiglini G, Cappiello A (2011) An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev 30(3):491–509

    Article  CAS  Google Scholar 

  23. Hewavitharana AK (2011) Matrix matching in liquid chromatography–mass spectrometry with stable isotope labelled internal standards—is it necessary? J Chromatogr A 1218(2):359–361

    Article  CAS  Google Scholar 

  24. Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14(11):1290–1294

    Article  CAS  Google Scholar 

  25. Stüber M, Reemtsma T (2004) Evaluation of three calibration methods to compensate matrix effects in environmental analysis with LC-ESI-MS. Anal Bioanal Chem 378(4):910–916

    Article  Google Scholar 

  26. Kang J, Hick LA, Price WE (2007) Using calibration approaches to compensate for remaining matrix effects in quantitative liquid chromatography/electrospray ionization multistage mass spectrometric analysis of phytoestrogens in aqueous environmental samples. Rapid Commun Mass Spectrom 21(24):4065–4072

    Article  CAS  Google Scholar 

  27. Ismaiel OA, Halquist MS, Elmamly MY, Shalaby A, Thomas Karnes H (2008) Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations. J Chromatogr B Anal Technol Biomed Life Sci 875(2):333–343

    Article  CAS  Google Scholar 

  28. Zhao X, Metcalfe CD (2008) Characterizing and compensating for matrix effects using atmospheric pressure chemical ionization liquid chromatography-tandem mass spectrometry: analysis of neutral pharmaceuticals in municipal wastewater. Anal Chem 80(6):2010–2017

    Article  CAS  Google Scholar 

  29. Gosetti F, Mazzucco E, Zampieri D, Gennaro MC (2010) Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1217(25):3929–3937

    Article  CAS  Google Scholar 

  30. Verfahren der Standardaddition nach DIN 32633 (1998) Beuth, Berlin

  31. Niessen WMA, Manini P, Andreoli R (2006) Matrix effects in quantitative pesticide analysis using liquid chromatography–mass spectrometry. Mass Spectrom Rev 25(6):881–899

    Article  CAS  Google Scholar 

  32. Haun J, Oeste K, Teutenberg T, Schmidt CK (2012) Long-term high-temperature and pH stability assessment of modern commercially available stationary phases by using retention factor analysis. J Chromatogr A 1263:99–107

    Article  CAS  Google Scholar 

  33. Wyndham KD, Walter TH, Iraneta PC, Neue UD, McDonald PD, Morrison D, Baynham M (2004) A review of waters hybrid particle technology, part 2. Ethylene-bridged [BEH Technology] hybrids and their use in liquid chromatography

  34. Srinivasan G, Müller K (2006) Influence of solvents on the conformational order of C18 alkyl modified silica gels. J Chromatogr A 1110(1–2):102–107

    CAS  Google Scholar 

  35. León-González ME, Pérez-Arribas LV, Polo Díez LM, Panis C, San Andrés MP (2001) Determination of triazine herbicides by capillary liquid chromatography with on-column focusing and temperature gradient. Anal Chim Acta 445(1):29–34

    Article  Google Scholar 

  36. Ling BL, Baeyens W, Dewaele C (1992) Comparative study of “on-column focusing” applied to micro-LC and conventional LC. J Microcolumn Sep 4(1):17–22

    Article  CAS  Google Scholar 

  37. Scheurer M, Brauch HJ, Lange FT (2009) Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Anal Bioanal Chem 394(6):1585–1594

    Article  CAS  Google Scholar 

  38. Reemtsma T, Alder L, Banasiak U (2013) A multimethod for the determination of 150 pesticide metabolites in surface water and groundwater using direct injection liquid chromatography-mass spectrometry. J Chromatogr A 1271(1):95–104

    Article  CAS  Google Scholar 

  39. Van De Steene JC, Lambert WE (2008) Comparison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. J Am Soc Mass Spectrom 19(5):713–718

    Article  Google Scholar 

  40. Zhu YH, Li GR, Duan YP, Chen SQ, Zhang C, Li YF (2008) Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector. Food Chem 109(4):899–908

    Article  CAS  Google Scholar 

  41. Conley JM, Symes SJ, Kindelberger SA, Richards SM (2008) Rapid liquid chromatography-tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J Chromatogr A 1185(2):206–215

    Article  CAS  Google Scholar 

  42. DIN 32645 Nachweis-, Erfassungs- und Bestimmungsgrenze (1994) Beuth, Berlin

  43. Schadstoffinformationen (2006) http://www.enius.de/schadstoffe/tolylfluanid.html.

  44. Test 07/2012, Stille Mineralwässer: Mineralstoffe Mangelware (2012) http://www.test.de/shop/test-hefte/test_07_2012/?ft=download-2001

  45. Predict properties viewer (2012) http://www.chemicalize.org/

  46. Wiebke T (2008) Metaboliten von Pflanzenschutzmittel-Wirkstoffen im Sickerwasser von Lysimetern oder Feldversickerungsstudien. BVL - Bundesamt für Verbraucherschutz und Lebensmittelsicherheit 2008

  47. Gesundheitliche Orientierungswerte (GOW) für nicht relevante Metaboliten (nrM) von Wirkstoffen aus Pflanzenschutzmitteln (PSM) (2008) Umweltbundesamt. http://www.umweltdaten.de/wasser/themen/trinkwassertoxikologie/tabelle_gow_nrm.pdf

  48. Peer review of the pesticide risk assessment of the active substances (2008) http://www.efsa.europa.eu/de/pesticides/pesticidesscdocs.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowal, S., Balsaa, P., Werres, F. et al. Fully automated standard addition method for the quantification of 29 polar pesticide metabolites in different water bodies using LC-MS/MS. Anal Bioanal Chem 405, 6337–6351 (2013). https://doi.org/10.1007/s00216-013-7028-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7028-5

Keywords

Navigation