Skip to main content
Log in

Recent trends in the analysis of amino acids in fruits and derived foodstuffs

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The amino acid content of fruit and fruit-derived foods is studied intensely because of the contribution to nutritional value, aroma, taste and health-promoting effects and their possible use as markers of origin and authenticity. In this review, based on 101 references, the most recent trends in the analysis of amino acids are presented: the most important techniques, the different sample treatment procedures (including derivatisation) and the most frequent applications are described and compared. Pertinent publications were retrieved from Scopus and Web of Knowledge database searches lastly performed in February 2012 with the keywords "amino acid", "analysis", "liquid chromatography", "gas chromatography", "electrophoresis", "fruit", and "vegetables"; the time limit was set from the year 2000 onwards. Although amino acids have been analysed in foods for decades, new technical possibilities and advancements have allowed ever-increasing accuracy and targeting of the methods in order to overcome the challenges posed by the complex plant matrices and their high intrinsic variability.

Amino acid analysis in fruits

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

AA:

Amino acid

AMDIS:

Automated Mass Spectral Deconvolution and Identification System

CE:

Capillary electrophoresis

EI:

Electron impact

FID:

Flame ionisation detection

FITC:

Fluorescein isothiocyanate

FMOC:

9-Fluorenylmethyl chloroformate

GC:

Gas chromatography

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

HPLC-FL:

High-performance liquid chromatography with fluorescence detection

HPLC-UV:

High-performance liquid chromatography with UV detection

LC:

Liquid chromatography

LIF:

Laser-induced fluorescence

MEKC:

Micellar electrokinetic chromatography

MS:

Mass spectrometry

OPA:

o-Phthaldialdehyde

RP:

Reversed phase

Ru-bpy:

Tris(2,2′-bipyridine)ruthenium(III)

TOF:

Time of flight

UHPLC:

Ultra-high-performance liquid chromatography

References

  1. Ali K, Maltese F, Choi YH, Verpoorte R (2010) Phytochem Rev 9:357–378

    CAS  Google Scholar 

  2. Hernández-Orte P, Peña A, Pardo I, Cacho J, Ferreira V (2012) Food Sci Technol Int 18:103–112

    Google Scholar 

  3. Mills FD, Baker BG, Hodge JE (1969) J Agric Food Chem 17:723–727

    CAS  Google Scholar 

  4. Pandey N, Meena RP, Rai SK, Pandey-Rai S (2011) Int J Pharma Bio Sci 2:419–441

    CAS  Google Scholar 

  5. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Crit Rev Plant Sci 25:417–440

    CAS  Google Scholar 

  6. Rapisarda P, Calabretta ML, Romano G, Intrigliolo F (2005) J Agric Food Chem 53:2664–2669

    CAS  Google Scholar 

  7. Smillie TJ, Khan IA (2010) Clin Pharmacol Ther 87:175–186

    CAS  Google Scholar 

  8. Shepherd LVT, Fraser P, Stewart D (2011) Bioanalysis 3:1143–1159

    CAS  Google Scholar 

  9. Iijima Y, Aoki K (2009) J Jpn Soc Hortic Sci 78:14–22

    CAS  Google Scholar 

  10. Molnár-Perl I (2000) J Chromatogr A 891:1–32

    Google Scholar 

  11. Iwata T, Mitoma H, Yamaguchi M (2000) Anal Chim Acta 416:69–75

    CAS  Google Scholar 

  12. Cohen SA, Meys M, Tarvin TL (1989) The PICOTAG method. A manual of advanced techniques for amino acid analysis. Millipore, Bedford

    Google Scholar 

  13. Garde-Cerdán T, Ancín-Azpilicueta C (2008) LWT Food Sci Technol 41:501–510

    Google Scholar 

  14. Lamikanra O, Kassa AK (1999) J Agric Food Chem 47:4837–4841

    CAS  Google Scholar 

  15. Dai F, Burkert VP, Singh HN, Hinze WL (1997) Microchem J 57:166–198

    CAS  Google Scholar 

  16. Molnár-Perl I, Vasanits A (2001) Chromatographia 53:188–198

    Google Scholar 

  17. Wong OS, Sternson LA, Schowen RL (1985) J Am Chem Soc 107:6421–6422

    CAS  Google Scholar 

  18. Valles BS, García NP, Madrera RR, Lobo AP (2005) J Agric Food Chem 53:6408–6413

    Google Scholar 

  19. Pripis-Nicolau L, De Revel G, Marchand S, Beloqui AA, Bertrand A (2001) J Sci Food Agric 81:731–738

    CAS  Google Scholar 

  20. Soufleros EH, Bouloumpasi E, Tsarchopoulos C, Biliaderis CG (2003) Food Chem 80:261–273

    CAS  Google Scholar 

  21. Kutlán D, Molnár-Perl I (2003) J Chromatogr A 987:311–322

    Google Scholar 

  22. Kelly MT, Blaise A, Larroque M (2010) J Chromatogr A 1217:7385–7392

    CAS  Google Scholar 

  23. Vasanits A, Kutlán D, Sass P, Molnár-Perl I (2000) J Chromatogr A 870:271–287

    CAS  Google Scholar 

  24. Hanczkó R, Kőrös Á, Tóth F, Molnár-Perl I (2005) J Chromatogr A 1087:210–222

    Google Scholar 

  25. Molnár-Perl I (2011) J Chromatogr B 879:1241–1269

    Google Scholar 

  26. Alaiz M, Girón J, Hidalgo FJ, de la Maza MP, Zamora R, Vioque E (1989) Synthesis 7:544–547

    Google Scholar 

  27. Riin R, Koit H (2012) J Chromatogr A 1245:134–142

    Google Scholar 

  28. Oliva J, Garde-Cerdán T, Martínez-Gil AM, Rosario Salinas M, Barba A (2011) Food Chem 129:1676–1680

    CAS  Google Scholar 

  29. Garde-Cerdán T, Lorenzo C, Lara JF, Pardo F, Ancín-Azpilicueta C, Rosario Salinas M (2009) J Agric Food Chem 57:2410–2419

    Google Scholar 

  30. Montevecchi G, Masino F, Chinnici F, Antonelli A (2010) Food Chem 121:69–77

    CAS  Google Scholar 

  31. Garde-Cerdán T, Martínez-Gil AM, Lorenzo C, Lara JF, Pardo F, Rosario Salinas M (2011) Food Chem 124:106–116

    Google Scholar 

  32. Gómez-Alonso S, Hermosín-Gutíerrez I, García-Romero E (2007) J Agric Food Chem 55:608–613

    Google Scholar 

  33. Fabiani A, Versari A, Parpinello GP, Castellari M, Galassi S (2002) J Chromatogr Sci 40:14–18

    CAS  Google Scholar 

  34. Servillo L, Giovane A, Balestrieri ML, Cautela D, Castaldo D (2011) J Agric Food Chem 59:274–281

    CAS  Google Scholar 

  35. Changxia S, Jinghe Y, Lei L, Xia W, Yang L, Shufang L (2004) J Chromatogr B 803:173–190

    Google Scholar 

  36. Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C (2011) J Exp Bot 62:1103–1118

    CAS  Google Scholar 

  37. Pereira GE, Gaudillere J-P, Pieri P, Hilbert G, Maucourt M, Deborde C, Moing A, Rolin D (2006) J Agric Food Chem 54:6765–6775

    CAS  Google Scholar 

  38. Hernández-Orte P, Ibarz MJ, Cacho J, Ferreira V (2003) Chromatographia 58:29–35

    Google Scholar 

  39. Pomilio AB, Giraudo MA, Duchowicz PR, Castro EA (2010) Food Chem 123:917–927

    CAS  Google Scholar 

  40. Cohen SA, Michaud DR (1993) Anal Biochem 211:279–287

    CAS  Google Scholar 

  41. Melucci D, Xie M, Reschiglian P, Torsi G (1999) Chromatographia 49:317–320

    CAS  Google Scholar 

  42. Versari A, Parpinello GP, Fabiani A (2007) J Chromatogr Sci 45:515–518

    CAS  Google Scholar 

  43. Versari A, Parpinello GP, Mattioli AU, Galassi S (2008) Food Chem 108:334–340

    CAS  Google Scholar 

  44. Bauza T, Kelly MT, Blaise A (2007) Food Chem 105:405–413

    CAS  Google Scholar 

  45. Bauza T, Blaise A, Daumas F, Cabanis JC (1995) J Chromatogr A 707:373–379

    CAS  Google Scholar 

  46. Stines AP, Grubb J, Gockowiak H, Henschke PA, Høj PB, Van Heeswijck R (2000) Aust J Grape Wine Res 6:150–158

    CAS  Google Scholar 

  47. Kodamatani H, Komatsu Y, Yamazaki S, Saito K (2007) J Chromatogr A 1140:88–94

    CAS  Google Scholar 

  48. Knight A, Greenway GM (1996) Analyst 121:101–106

    Google Scholar 

  49. Jianguo L, Qinyi Y, Yunlong G, Huangxian J (2006) Anal Chem 78:2694–2699

    Google Scholar 

  50. Gómez-Ariza JL, Villegas-Portero MJ, Bernal-Daza V (2005) Anal Chim Acta 540:221–230

    Google Scholar 

  51. Naidong W (2003) J Chromatogr B 796:209–224

    CAS  Google Scholar 

  52. Gika HG, Theodoridis GA, Vrhovsek U, Mattivi F (2012) J Chromatogr A 1259:121–127

    CAS  Google Scholar 

  53. Mazzotti F, Benabdelkamel H, Donna LD, Athanassopoulos CM, Napoli A, Sindona G (2012) J Mass Spectrom 47:932–939

    CAS  Google Scholar 

  54. Walker JM (1997) Methods Mol Biol 64:189–195

    CAS  Google Scholar 

  55. Do Carmo Barbosa Mendes De Vasconcelos M, Bennett RN, Rosa EA, Ferreira Cardoso JV, Bennett RN, Rosa EAS, Cardoso JVF (2007) J Agric Food Chem 55:3508–3516

    Google Scholar 

  56. Voss K, Galensa R (2000) Amino Acids 18:339–352

    CAS  Google Scholar 

  57. Choi S-H, Kim H-R, Kim H-J, Lee I-S, Kozukue N, Levin CE, Friedman M (2011) J Agric Food Chem 59:12801–12814

    CAS  Google Scholar 

  58. Choi SH, Lee SH, Kim HJ, Lee IS, Kozukue N, Levin CE, Friedman M (2010) J Agric Food Chem 58:7547–7556

    CAS  Google Scholar 

  59. Allard P, Cowell LD, Zytkovicz TH, Korson MS, Ampola MG (2004) Clin Biochem 37:857–862

    CAS  Google Scholar 

  60. He YH, Lu WQ, Li DF, Zhang HL, Jiang HQ (2006) J Anim Vet Adv 5:143–149

    CAS  Google Scholar 

  61. Matsuyama A, Yoshimura K, Shimizu C, Murano Y, Takeuchi H, Ishimoto MJ (2009) Biosci Bioeng 107:538–543

    CAS  Google Scholar 

  62. Friedman M (2004) J Agric Food Chem 52:385–406

    CAS  Google Scholar 

  63. Sorrequieta A, Ferraro G, Boggio SB, Valle EM (2010) Amino Acids 38:1523–1532

    CAS  Google Scholar 

  64. Gomez FJV, Monasterio RP, Soto Vargas VC, Silva MF (2012) Electrophoresis 33:2240–2252

    CAS  Google Scholar 

  65. Sádecká J, Polonský J (2000) J Chromatogr A 880:243–279

    Google Scholar 

  66. Lechtenberg M, Henschel K, Liefländer-Wulf U, Quandt B, Hensel A (2012) Food Chem 135:1676–1684

    CAS  Google Scholar 

  67. Cebolla-Cornejo J, Valcárcel M, Herrero-Martínez JM, Roselló S, Nuez F (2012) Electrophoresis 33:2416–2423

    CAS  Google Scholar 

  68. Ohla S, Schulze P, Fritzsche S, Belder D (2011) Anal Bioanal Chem 399:1853–1857

    CAS  Google Scholar 

  69. Simó C, Rizzi A, Barbas C, Cifuentes A (2005) Electrophoresis 26:1432–1441

    Google Scholar 

  70. Simó C, Martín-Alvarez PJ, Barbas C, Cifuentes A (2004) Electrophoresis 25:2885–2891

    Google Scholar 

  71. Carlavilla D, Moreno-Arribas MV, Fanali S, Cifuentes A (2006) Electrophoresis 27:2551–2557

    CAS  Google Scholar 

  72. Mandrioli R, Morganti E, Mercolini L, Kenndler E, Raggi MA (2011) Electrophoresis 32:2809–2815

    CAS  Google Scholar 

  73. Mandrioli R, Mercolini L, Saracino MA, Raggi MA (2012) Curr Med Chem 19:1846–1863

    CAS  Google Scholar 

  74. Xiao Y, Yu X-D, Wang K, Xu J-J, Huang J, Chen H-Y (2007) Talanta 71:2048–2055

    CAS  Google Scholar 

  75. Zgola-Grześkowiak A, Grześkowiak T (2012) Int J Food Prop 15:628–637

    Google Scholar 

  76. Cerdán-Calero M, Sendra JM, Sentandreu E (2012) J Chromatogr A 1241:84–95

    Google Scholar 

  77. Orata F (2012) In: Mohd MA (ed) Derivatization reactions and reagents for gas chromatography analysis. InTech, Rijeka. http://www.intechopen.com/books/advanced-gas-chromatography-progress-in-agricultural-biomedical-and-industrial-applications/derivatization-reactions-and-reagents-for-gas-chromatography-analysis

  78. Rudell DR, Mattheis JP, Curry EA (2008) J Agric Food Chem 56:1138–1147

    CAS  Google Scholar 

  79. Lee S, Choi H-K, Cho SK, Kim Y-S (2010) J Chromatogr B 878:2983–2988

    CAS  Google Scholar 

  80. Biais B, Allwood JW, Deborde C, Xu Y, Maucourt M, Beauvoit B, Dunn WB, Jacob D, Goodacre R, Rolin D, Moing A (2009) Anal Chem 81:2884–2894

    CAS  Google Scholar 

  81. Füzfai Z, Katona ZF, Kovács E, Molnár-Perl I (2004) J Agric Food Chem 52:7444–7452

    Google Scholar 

  82. Füzfai Z, Molnár-Perl I (2007) J Chromatogr A 1149:88–101

    Google Scholar 

  83. Spanik I, Horvathova G, Janacova A, Krupcik J (2007) J Chromatogr A 1150:145–154

    CAS  Google Scholar 

  84. Pätzold R, Brückner H (2005) J Agric Food Chem 53:9722–9729

    Google Scholar 

  85. Knapp DR (1979) Handbook of analytical derivatization reactions. Wiley, New York

    Google Scholar 

  86. Natalini B, Macchiarulo A, Sardella R, Massarotti A, Pellicciari R (2008) J Sep Sci 31:2395–2403

    CAS  Google Scholar 

  87. Natalini B, Sardella R, Carbone G, Sardella R, Pellicciari R (2009) Anal Chim Acta 638:225–233

    CAS  Google Scholar 

  88. Sardella R, Sardella R, Carotti A, Ianni F, García Rubiño ME, Natalini B (2012) J Chromatogr A 1269:316–324

    CAS  Google Scholar 

  89. Fiamegos YC, Stalikas CD (2006) J Chromatogr A 1110:66–72

    CAS  Google Scholar 

  90. Silva BM, Casal S, Andrade PB, Seabra RM, Oliveira MB, Ferreira MA (2003) Anal Sci 19:1285–1290

    CAS  Google Scholar 

  91. Silva BM, Casal S, Andrade PB, Seabra RM, Oliveira MBP, Ferreira M (2004) J Agric Food Chem 52:1201–1206

    CAS  Google Scholar 

  92. Husek P (1998) J Chromatogr B 717:57–91

    CAS  Google Scholar 

  93. Husek P (1991) J Chromatogr 552:289–299

    CAS  Google Scholar 

  94. Lee J, Mattheis JP, Rudell DR (2012) Postharvest Biol Technol 68:32–42

    CAS  Google Scholar 

  95. Lee J, Rudell DR, Davies PJ, Watkins CB (2012) Metabolomics 8:742–753

    CAS  Google Scholar 

  96. Molnár-Perl I, Katona Z, Sass P (1999) J Chromatogr A 847:93–104

    Google Scholar 

  97. Martinelli F, Basile B, Morelli G, d'Andria R, Tonutti P (2012) Sci Hortic 144:201–207

    CAS  Google Scholar 

  98. Hegedüs H, Gergely A, Veress T, Horváth P (1999) Analusis 27:458–463

    Google Scholar 

  99. Meher HC, Gajbhiye VT, Singh G (2011) J AOAC Int 94:232–242

    CAS  Google Scholar 

  100. Mossine VV, Mawhinney TP (2007) J Agric Food Chem 55:10373–10381

    CAS  Google Scholar 

  101. Loscos N, Ségurel M, Dagan L, Sommerer N, Marlin T, Baumes R (2008) Anal Chim Acta 621:24–29

    CAS  Google Scholar 

  102. Ségurel M, Razungles A, Riou C, Salles M, Baumes R (2004) J Agric Food Chem 52:7084–7093

    Google Scholar 

  103. De Mora SJ, Knowles SJ, Eschenbruch R, Torrey WJ (1987) Vitis 26:79–84

    Google Scholar 

  104. Hudson CB, Robertson AV (1967) Aust J Chem 20:1511–1520

    CAS  Google Scholar 

  105. Long D, Wilkinson KL, Poole K, Taylor DK, Warren T, Astorga AM, Jiranek V (2012) J Agric Food Chem 60:4259–4264

    CAS  Google Scholar 

  106. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) Science 18:1552–1555

    Google Scholar 

  107. Konno R, Brückner H, D'Aniello A, Fisher GH, Fujii N, Homma H (2007) D-amino acids: a new frontier in amino acid and protein research - practical methods and protocols. Nova, Hauppauge

    Google Scholar 

  108. Friedman M (1999) J Agric Food Chem 47:3457–3479

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Mandrioli.

Additional information

Published in the topical collection Amino Acid Analysis with guest editor Toshimasa Toyo'oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandrioli, R., Mercolini, L. & Raggi, M.A. Recent trends in the analysis of amino acids in fruits and derived foodstuffs. Anal Bioanal Chem 405, 7941–7956 (2013). https://doi.org/10.1007/s00216-013-7025-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7025-8

Keywords