Analytical and Bioanalytical Chemistry

, Volume 405, Issue 18, pp 6009–6018 | Cite as

Generation of statin drug metabolites through electrochemical and enzymatic oxidations

  • Smriti KheraEmail author
  • Na Hu
Research Paper


The generation of key drug metabolites for the purpose of their complete structural characterization, toxicity testing, as well as to serve as standards for quantitative studies, is a critical step in the pharmaceutical discovery and development cycle. Here, we utilized electrochemistry/mass spectrometry for the detection and subsequent generation of six phase I metabolites of simvastatin and lovastatin. Both simvastatin and lovastatin are widely used for the treatment of hypercholesterolemia. There are known drug–drug interaction issues of statin therapy, and it has been suggested that the oxidative metabolites may contribute to the cholesterol-lowering effect of both statins. Of the known phase I metabolites of simvastatin and lovastatin, none are commercially available, and chemical means for the synthesis of a very few of them have been previously reported. Here, we report that electrochemical oxidation of less than 1 mg each of simvastatin and lovastatin led to the generation of three oxidative metabolites of each parent to allow complete nuclear magnetic resonance characterization of all six metabolites. The yields obtained by the electrochemical approach were also compared with incubation of parent drug with commercially available bacterial mutant CYP102A1 enzymes, and it was found that the electrochemical approach gave higher yields than the enzymatic oxidations for the generation of most of the observed oxidative metabolites in this study.


Generation of statin drug metabolites by EC/MS (representative mass voltammogram shown), and recombinant CYP enzymes


Electrochemistry Electrochemistry/mass spectrometry (EC/MS) Metabolite generation Simvastatin Lovastatin CYP102A1 



The authors would like to acknowledge Chuck Li (Amgen Inc.) for developing the MATLAB script for recording mass-voltammograms, Chris Fotsch (Amgen Inc.) for the methodology used in this work to conduct the enzymatic incubations, Martin Eysberg, Jim Powers, and Joann Purkerson (Antec, USA) for training on the EC/MS platform as well as helpful discussions, and Nanosyn (Santa Clara, CA, USA) for performing the mass-directed metabolite purification of the dihydrodiol metabolites. We also acknowledge the Amgen Summer Internship program which made this manuscript possible.

Supplementary material

216_2013_7021_MOESM1_ESM.pdf (274 kb)
ESM 1 (PDF 273 kb)


  1. 1.
    Mauro VF (1993) Clin Pharmacokinet 24:195–202CrossRefGoogle Scholar
  2. 2.
    Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Proc Natl Acad Sci 77:3957–3961CrossRefGoogle Scholar
  3. 3.
    Jekkel A, Kónya A, Ilkóy E, Boros S, Horváth G, Sütó J (1997) J Antibiot 50:750–754CrossRefGoogle Scholar
  4. 4.
    Vickers S, Duncan CA, Vyas KP, Kari PH, Arison B, Prakash SR, Ramjit HG, Pitzenberger SM, Stokker G, Duggan DE (1990) Drug Metab Dispos 18:476–483Google Scholar
  5. 5.
    Cheng H, Schwartz MS, Vickers S, Gilbert JD, Amin RD, Depuy B, Liu L, Rogers JD, Pond SM, Duncan CA, Olah TV, Bayne WF (1994) Drug Metab Dispos 22:139–142Google Scholar
  6. 6.
    Vickers S, Duncan CA, Chen IW, Rosegay A, Duggan DE (1990) Drug Metab Dispos 18:138–145Google Scholar
  7. 7.
    Prueksaritanont T, Gorham LM, Ma B, Liu L, Yu X, Zhao JJ, Slaughter DE, Arison BH, Vyas KP (1997) Drug Metab Dispos 25:1191–1199Google Scholar
  8. 8.
    Vyas KP, Kari PH, Pitzenberger SM, Halpin RA, Ramjit HG, Arison B, Murphy JS, Hoffman WF, Schwartz MS, Ulm EH, Duggan DE (1990) Drug Metab Dispos 18:203–211Google Scholar
  9. 9.
    Greenspan MD, Yudkovitz JB, Alberts AW, Argenbright LS, Arison BH (1990) Smithson JL Drug Metab Dispos 16:678–682Google Scholar
  10. 10.
    Kim KH, Kang JY, Kim DH, Park SH, Kim D, Park KD, Lee YJ, Jung HC, Pan JG, Ahn T, Yun CH (2011) Drug Metab Dispos 39:140–150CrossRefGoogle Scholar
  11. 11.
    Stokker G (1994) Bioorg Med Chem Lett 4:1767–1770CrossRefGoogle Scholar
  12. 12.
    Baumann A, Karst U (2010) Expert Opin Drug Metab Toxicol 6:1–17CrossRefGoogle Scholar
  13. 13.
    Jahn S, Karst U (2012) J Chromatogr A 1259:16–49CrossRefGoogle Scholar
  14. 14.
    Jurva U, Wikström HV, Bruins AP (2000) Rapid Commun Mass Spectrom 14:529–533CrossRefGoogle Scholar
  15. 15.
    Jurva U, Wikström HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17:800–810CrossRefGoogle Scholar
  16. 16.
    Nouri-Nigjeh E, Permentier HP, Bischoff R, Bruins AP (2011) Anal Chem 83:5519–5525CrossRefGoogle Scholar
  17. 17.
    Madsen KG, Grönberg G, Skonberg C, Jurva U, Hansen SH, Olsen J (2008) Chem Res Toxicol 21:2035–2041CrossRefGoogle Scholar
  18. 18.
    Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, Johansen TN, Olsen J (2008) Chem Res Toxicol 21:1107–1119CrossRefGoogle Scholar
  19. 19.
    Thevis M, Lohmann W, Schrader Y, Kohler M, Bornatsch W, Karst U, Schänzer W (2008) Eur J Mass Spectrom 14:163–170CrossRefGoogle Scholar
  20. 20.
    Madsen KG, Olsen J, Skonberg C, Hansen SH, Jurva U (2007) Chem Res Toxicol 20:821–831CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Molecular StructureAmgen Inc.South San FranciscoUSA
  2. 2.Life Sciences GroupAgilent Technologies Inc.Santa ClaraUSA
  3. 3.Department of ChemistryMichigan Technological UniversityHoughtonUSA

Personalised recommendations