Abstract
Inkjet printing has evolved from an office printing application to become an important tool in industrial mass fabrication. In parallel, this technology is increasingly used in research laboratories around the world for the fabrication of entire (bio)chemical sensing devices or single functional elements of such devices. Regularly stated characteristics of inkjet printing making it attractive to replace an alternative material deposition method are low cost, simplicity, high resolution, speed, reproducibility, flexibility, non-contact, and low amount of waste generated. With this review, we give an overview over areas of (bio)chemical sensing device development profiting from inkjet printing applications. A variety of printable functional sensor elements are introduced by examples, and the advantages and challenges of the inkjet method are pointed out. It is demonstrated that inkjet printing is already a routine tool for the fabrication of some (bio)chemical sensing devices, but also that novel applications are being continuously developed. Finally, some inherent limitations of the method and challenges for the further exploitation of this technology are pointed out.
Similar content being viewed by others
Abbreviations
- DBSA:
-
Dodecylbenzenesulfonic acid
- DOD:
-
Drop-on-demand
- HRP:
-
Horseradish peroxidase
- LbL:
-
Layer-by-layer
- LED:
-
Light emitting diode
- LOD:
-
Limit of detection
- ODF:
-
Oligodeoxyfluoroside
- PANI:
-
Polyaniline
- PEDOT-PSS:
-
Poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)
- SERS:
-
Surface enhanced Raman scattering
References
Kimura J, Kawana Y, Kuriyama T (1988) An immobilized enzyme membrane fabrication method using an ink jet nozzle. Biosensors 4:41–52
Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:212–2126
Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305
De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: State of the art and future developments. Adv Mater 16:203–213
Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713
Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing—process and its applications. Adv Mater 22:673–685
Hwang SY, Lim G (2000) DNA chip technologies. Biotechnol Bioprocess Eng 5:159–163
Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ (2010) Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 35:845–867
Delaney JT, Smith PJ, Schubert US (2009) Inkjet printing of proteins. Soft Matter 5:4866–4877
Kukkola J, Mohl M, Leino AR, Toth G, Wu MC, Shchukarev A, Popov A, Mikkola JP, Lauri J, Riihimaki M, Lappalainen J, Jantunen H, Kordas K (2012) Inkjet printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. J Mater Chem 22:17878–17886
Teichler A, Perelaer J, Schubert US (2013) Inkjet printing of organic electronics - comparison of deposition techniques and state-of-the-art developments. J Mater Chem C 1:1910–1925
Barbulovic-Nad I, Lucente M, Yu S, Mingjun Z, Wheeler AR, Bussmann M (2006) Bio-microarray fabrication techniques - A review. Crit Rev Biotechnol 26:237–259
Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067–1076
De Gans BJ, Hoeppener S, Schubert US (2006) Polymer-relief microstructures by inkjet etching. Adv Mater 18:910–914
Abe K, Suzuki K, Citterio D (2008) Inkjet printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934
Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nat Mater 7:277–290
Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed 37:550–575
Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) "Dip-pen" nanolithography. Science 283:661–663
Derby B (2008) Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem 18:5717–5721
Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D, Piana C (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20:2019–2026
Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B, Di Biase M (2007) An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sens Actuators, B 126:252–257
Di Risio S, Yan N (2010) Bioactive paper through inkjet printing. J Adhes Sci Technol 24:661–684
Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75:441–447
Nishioka GM, Markey AA, Holloway CK (2004) Protein damage in drop-on-demand printers. J Am Chem Soc 126:16320–16321
Di Risio SD, Yan N (2007) Piezoelectric ink-jet printing of horseradish peroxidase: Effect of Ink viscosity modifiers on activity. Macromol Rapid Commun 28:1934–1940
Loffredo F, Mauro ADGD, Burrasca G, La Ferrara V, Quercia L, Massera E, Di Francia G, Sala DD (2009) Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens Actuators, B 143:421–429
Ihalainen P, Majumdar H, Määttänen A, Wang S, Österbacka R, Peltonen J (2012) Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications. Biochim Biophys Acta - Gen Subjects. doi:10.1016/j.bbagen.2012.09.007
Jalkanen T, Mäkilä E, Määttänen A, Tuura J, Kaasalainen M, Lehto V-P, Ihalainen P, Peltonen J, Salonen J (2012) Porous silicon micro- and nanoparticles for printed humidity sensors. Appl Phys Lett 101:263110–263114
Andersson H, Manuilskiy A, Unander T, Lidenmark C, Forsberg S, Nilsson HE (2012) Inkjet printed silver nanoparticle humidity sensor with memory effect on paper. IEEE Sens J 12:1901–1905
Sarfraz J, Tobjörk D, Österbacka R, Lindén M (2012) Low-cost hydrogen sulfide gas sensor on paper substrates: Fabrication and demonstration. IEEE Sens J 12:1973–1978
Määttänen A, Vanamo U, Ihalainen P, Pulkkinen P, Tenhu H, Bobacka J, Peltonen J (2013) A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens Actuators, B 177:153–162
Altenberend U, Molina-Lopez F, Oprea A, Briand D, Bârsan N, De Rooij NF, Weimar U (2012) Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens Actuators, B. doi:10.1016/j.snb.2012.11.025
Claramunt S, Monereo O, Boix M, Leghrib R, Prades JD, Cornet A, Merino P, Merino C, Cirera A (2013) Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres. Sens Actuators, B. doi:10.1016/j.snb.2012.12.093
Bidoki SM, Lewis DM, Clark M, Vakorov A, Millner PA, McGorman D (2007) Ink-jet fabrication of electronic components. J Micromech Microeng 17:967
Magdassi S, Grouchko M, Berezin O, Kamyshny A (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4:1943–1948
Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert US (2012) Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv Mater 24:2620–2625
Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955
Määttänen A, Ihalainen P, Pulkkinen P, Wang S, Tenhu HJ, Peltonen J (2012) Inkjet-printed gold electrodes on paper - characterisation and functionalisation. ACS Appl Mater Interfaces 4:955–964
Nie X, Wang H, Zou J (2012) Inkjet printing of silver citrate conductive ink on PET substrate. Appl Surf Sci 261:554–560
Ihalainen P, Majumdar H, Viitala T, Törngren B, Närjeoja T, Määttänen A, Sarfraz J, Härmä H, Yliperttula M, Österbacka R, Peltonen J (2012) Application of paper-supported printed gold electrodes for impedimetric immunosensor development. Biosensors 3:1–17
Jensen GC, Krause CE, Sotzing GA, Rusling JF (2011) Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys 13:4888–4894
Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750
Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505
Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2:1021–1025
Small WR, in het Panhuis M (2007) Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3:1500–1503
Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem, Int Ed 49:2154–2157
Weng B, Shepherd RL, Crowley K, Killard AJ, Wallace GG (2010) Printing conducting polymers. Analyst 135:2779–2789
Su S-J, Kuramoto N (2000) Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system. Synth Met 108:121–126
Crowley K, Morrin A, Hernandez A, O'Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77:710–717
Crowley K, O'Malley E, Morrin A, Smyth MR, Killard AJ (2008) An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 133:391–399
Morrin A, Ngamna O, O'Malley E, Kent N, Moulton SE, Wallace GG, Smyth MR, Killard AJ (2008) The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochim Acta 53:5092–5099
Oh W-K, Kim S, Shin K-H, Jang Y, Choi M, Jang J (2013) Inkjet-printed polyaniline patterns for exocytosed molecule detection from live cells. Talanta 105:333–339
Phongphut A, Sriprachuabwong C, Wisitsoraat A, Tuantranont A, Prichanont S, Sritongkham P (2013) A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination. Sens Actuators, B 178:501–507
Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22:5478–5485
Karuwan C, Sriprachuabwong C, Wisitsoraat A, Phokharatkul D, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. Sens Actuators, B 161:549–555
Tseng CC, Chou YH, Hsieh TW, Wang MW, Shu YY, Ger MD (2012) Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor. Colloid Surface A 402:45–52
Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polymer films for the detection of organic vapors. IEEE Sens J 6:1435–1444
Yang M, Li LH, Zhang SQ, Li GY, Zhao HJ (2010) Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode. Sens Actuators, B 147:622–628
O'Toole M, Shepherd R, Wallace GG, Diamond D (2009) Inkjet printed LED based pH chemical sensor for gas sensing. Anal Chim Acta 652:308–314
Courbat J, Briand D, Wollenstein J, de Rooij NF (2011) Polymeric foil optical waveguide with inkjet printed gas sensitive film for colorimetric sensing. Sens Actuators, B 160:910–915
Courbat J, Briand D, Damon-Lacoste J, Wöllenstein J, de Rooij NF (2009) Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides. Sens Actuators, B 143:62–70
Yoon B, Ham DY, Yarimaga O, An H, Lee CW, Kim JM (2011) Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv Mater 23:5492–5497
Yoon B, Shin H, Yarimaga O, Ham DY, Kim J, Park IS, Kim JM (2012) An inkjet-printable microemulsion system for colorimetric polydiacetylene supramolecules on paper substrates. J Mater Chem 22:8680–8686
Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84:9729–9737
Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CDM, Brennan JD (2009) Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal Chem 81:5474–5483
Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064
Hossain S, Ozimok C, Sicard C, Aguirre S, Ali M, Li Y, Brennan J (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403:1567–1576
Kwon H, Samain F, Kool ET (2012) Fluorescent DNAs printed on paper: Sensing food spoilage and ripening in the vapor phase. Chem Sci 3:2542–2549
Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28:11265–11273
Carter JC, Alvis RM, Brown SB, Langry KC, Wilson TS, McBride MT, Myrick ML, Cox WR, Grove ME, Colston BW (2006) Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens Bioelectron 21:1359–1364
Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337
Kirk JT, Fridley GE, Chamberlain JW, Christensen ED, Hochberg M, Ratner DM (2011) Multiplexed inkjet functionalization of silicon photonic biosensors. Lab Chip 11:1372–1377
Yu WW, White IM (2010) Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630
Yu WW, White IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138:1020–1025
Bietsch A, Zhang JY, Hegner M, Lang HP, Gerber C (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880
Ness SJ, Kim S, Woolley AT, Nordin GP (2012) Single-sided inkjet functionalization of silicon photonic microcantilevers. Sens Actuators, B 161:80–87
Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem, Int Ed 46:1318–1320
Ballerini D, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluidics 13:769–787
Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457
Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 6:011301–011313
Martinez AW (2011) Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis 3:2589–2592
Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal Chem 28:925–942
Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal Chem 82:3–10
Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893
Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B 76:564–570
Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659
Citterio D, Maejima K, Suzuki K (2011) VOC-free inkjet patterning method for the fabrication of "paperfluidic" sensing devices. Paper presented at the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Seattle, Washington, USA
Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv. doi:10.1039/C3RA40828K
Jayawardane BM, McKelvie ID, Kolev SD (2012) A paper-based device for measurement of reactive phosphate in water. Talanta 100:454–460
Delaney JL, Hogan CF, Tian JF, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306
Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J (2011) Paper-based planar reaction arrays for printed diagnostics. Sens Actuators, B 160:1404–1412
Hossain SMZ, Brennan JD (2011) β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal Chem 83:8772–8778
Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579
Calvert P (2007) Printing cells. Science 318:208–209
Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99
Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666
Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926
Feng X, JinHui W, ShuQi W, Naside Gozde D, Umut Atakan G, Utkan D (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3:034101
Ellis SR, Ferris CJ, Gilmore KJ, Mitchell TW, Blanksby SJ, in het Panhuis M (2012) Direct lipid profiling of single cells from inkjet printed microarrays. Anal Chem 84:9679–9683
Liberski AR, Delaney JT, Schubert US (2010) “One cell−one well”: a new approach to inkjet printing single cell microarrays. ACS Comb Sci 13:190–195
Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, in het Panhuis M (2013) Bio-ink for on-demand printing of living cells. Biomater Sci 1:224–230
Shabnam P, Madhuja G, Frédéric L, Karen CC (2010) Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication 2:025003
Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203
Kit-Anan W, Olarnwanich A, Sriprachuabwong C, Kuruwan C, Tuantranont A, Wisitsoraat A, Srituravanich W, Pimpin A (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed polyaniline modified screen-printed carbon electrode for ascorbic acid detection. J Electroanal Chem 685:72–78
Su SX, Ali M, Filipe CDM, Li YF, Pelton R (2008) Microgel-based inks for paper-supported biosensing applications. Biomacromolecules 9:935–941
Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500
Jung W, Sahner K, Leung A, Tuller HL (2009) Acoustic wave-based NO2 sensor: Ink-jet printed active layer. Sens Actuators, B 141:485–490
Shen W, Li M, Ye C, Jiang L, Song Y (2012) Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab Chip 12:3089–3095
Author information
Authors and Affiliations
Corresponding author
Additional information
Nobutoshi Komuro and Shunsuke Takaki have equally contributed to this work.
Rights and permissions
About this article
Cite this article
Komuro, N., Takaki, S., Suzuki, K. et al. Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem 405, 5785–5805 (2013). https://doi.org/10.1007/s00216-013-7013-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-013-7013-z